

NORM
Developer’s
Guide
(version 1.3b8)

Background
This document describes an application programming interface (API) for the Nack-
Oriented Reliable Multicast (NORM) protocol implementation developed by the Protocol
Engineering and Advance Networking (PROTEAN) Research Group of the United States
Naval Research Laboratory (NRL). The NORM protocol provides general purpose
reliable data transport for applications wishing to use Internet Protocol (IP) Multicast
services for group data delivery. NORM can also support unicast (point-to-point) data
communication and may be used for such when deemed appropriate. The current NORM
protocol specification is given in the Internet Engineering Task Force (IETF) RFC 3940.
The NORM protocol is designed to provide end-to-end reliable transport of bulk data
objects or streams over generic IP multicast routing and forwarding services. NORM
uses a selective, negative acknowledgement (NACK) mechanism for transport reliability
and offers additional protocol mechanisms to conduct reliable multicast sessions with
limited "a priori" coordination among senders and receivers. A congestion control
scheme is specified to allow the NORM protocol fairly share available network
bandwidth with other transport protocols such as Transmission Control Protocol (TCP).
It is capable of operating with both reciprocal multicast routing among senders and
receivers and with asymmetric connectivity (possibly a unicast return path) from the
senders to receivers. The protocol offers a number of features to allow different types of
applications or possibly other higher level transport protocols to utilize its service in
different ways. The protocol leverages the use of FEC-based repair and other proven
reliable multicast transport techniques in its design.
The NRL NORM library attempts to provide a general useful capability for development
of reliable multicast applications for bulk file or other data delivery as well as support of
stream-based transport with possible real-time delivery requirements. The API allows
access to many NORM protocol parameters and control functions to tailor performance
for specific applications. While default parameters, where provided, can be useful to a
potential wide range of requirements, the many different possible group communication
paradigms dictate different needs for different applications. Even with NORM, the
developer should have a thorough understanding of the specific application's group
communication needs.

 2

Table of Contents

OVERVIEW--5

API Initialization --5

Session Creation and Control ---6

Data Transport --6
Data Transmission --7
Data Reception --8

API Event Notification ---8

BUILD NOTES ---9

Unix Platforms ---9

Win32/WiNCE Platforms--9

API REFERENCE-- 10

API Variable Types and Constants -- 10
NormInstanceHandle --- 10
NormSessionHandle -- 10
NormSessionId -- 11
NormNodeHandle--- 11
NormNodeId --- 11
NormObjectHandle --- 11
NormObjectType-- 12
NormSize--- 12
NormObjectTransportId -- 12
NormEventType--- 12
NormEvent --- 12
NormDescriptor --- 13
NormFlushMode -- 13
NormProbingMode --- 13
NormNackingMode--- 13
NormRepairBoundary -- 14
NormAckingStatus-- 14

API Initialization and Operation--- 14
NormCreateInstance() -- 15
NormDestroyInstance() -- 15
NormStopInstance() -- 16
NormRestartInstance() --- 16
NormSetCacheDirectory() --- 17
NormGetNextEvent() --- 17
NormGetDescriptor() --- 22

 3

Session Creation and Control Functions-- 23
NormCreateSession() --- 23
NormDestroySession() --- 24
NormSetUserData() --- 25
NormGetUserData() -- 25
NormGetLocalNodeId() -- 25
NormSetTxPort() -- 26
NormSetRxPortReuse() -- 26
NormSetMulticastInterface() -- 27
NormSetTTL()--- 28
NormSetTOS() -- 28
NormSetLoopback() -- 29

NORM Sender Functions -- 29
NormStartSender() -- 30
NormStopSender() -- 32
NormSetTransmitRate() -- 33
NormSetTxSocketBuffer() --- 33
NormSetCongestionControl() --- 34
NormSetTransmitRateBounds()--- 34
NormSetTransmitCacheBounds()--- 35
NormSetAutoParity() --- 36
NormGetGrttEstimate() -- 37
NormSetGrttEstimate() --- 37
NormSetGrttMax()-- 38
NormSetGrttProbingMode() --- 38
NormSetGrttProbingInterval()--- 39
NormSetBackoffFactor() --- 40
NormSetGroupSize() --- 41
NormFileEnqueue() --- 41
NormDataEnqueue() -- 42
NormRequeueObject() --- 43
NormStreamOpen() --- 44
NormStreamClose()--- 46
NormStreamWrite()--- 46
NormStreamFlush() --- 47
NormStreamSetAutoFlush() --- 48
NormStreamSetPushEnable()-- 49
NormStreamHasVacancy() -- 50
NormStreamMarkEom() --- 50
NormSetWatermark()--- 51
NormAddAckingNode() --- 52
NormRemoveAckingNode()--- 53
NormGetAckingStatus() --- 53

 4

NORM Receiver Functions-- 54
NormStartReceiver()-- 54
NormStopReceiver() -- 55
NormSetRxSocketBuffer()--- 56
NormSetSilentReceiver()--- 56
NormSetDefaultUnicastNack()-- 57
NormNodeSetUnicastNack() -- 58
NormSetDefaultNackingMode() -- 58
NormNodeSetNackingMode()--- 59
NormObjectSetNackingMode() --- 59
NormSetDefaultRepairBoundary() --- 60
NormNodeSetRepairBoundary() -- 60
NormStreamRead() --- 61
NormStreamSeekMsgStart()--- 62
NormStreamGetReadOffset()-- 62

NORM Object Functions -- 63
NormObjectGetType() --- 63
NormObjectHasInfo() -- 63
NormObjectGetInfoLength() -- 64
NormObjectGetInfo()--- 64
NormObjectGetSize() -- 65
NormObjectGetBytesPending() --- 65
NormObjectCancel()-- 66
NormObjectRetain() -- 66
NormObjectRelease()--- 67
NormFileGetName()-- 68
NormFileRename() --- 68
NormDataAccessData() -- 69
NormDataDetachData() -- 69
NormObjectGetSender() --- 70

NORM Node Functions -- 70
NormNodeGetId()--- 71
NormNodeGetAddress() --- 71
NormNodeGetGrtt() -- 72
NormNodeRetain()-- 72
NormNodeRelease() -- 73

 5

Overview
The NORM API has been designed to provide simple, straightforward access to and
control of NORM protocol state and functions. Functions are provided to create and
initialize instances of the NORM API and associated transport sessions (NormSessions).
Subsequently, NORM data transmission (NormSender) operation can be activated and the
application can queue various types of data (NormObjects) for reliable transport.
Additionally or alternatively, NORM reception (NormReceiver) operation can also be
enabled on a per-session basis and the protocol implementation alerts the application of
receive events.
By default, the NORM API will create an operating system thread in which the NORM
protocol engine runs. This allows user application code and the underlying NORM code
to execute somewhat independently of one another. The NORM protocol thread notifies
the application of various protocol events through a thread-safe event dispatching
mechanism and API calls are provided to allow the application to control NORM
operation. (Note: API mechanisms for lower-level, non-threaded control and execution
of the NORM protocol engine code may also be provided in the future.)
The NORM API operation can be roughly summarized with the following categories of
functions:

1) API Initialization
2) Session Creation and Control
3) Data Transport
4) API Event Notification

Note the order of these categories roughly reflects the order of function calls required to
use NORM in an application. The first step is to create and initialize, as needed, at least
one instance of the NORM API. Then one or more NORM transport sessions (where a
“session” corresponds to data exchanges on a given multicast group (or unicast address)
and host port number) may be created and controlled. Applications may participate as
senders and/or receivers within a NORM session. NORM senders transmit data to the
session destination address (usually an IP multicast group) while receivers are notified of
incoming data. The NORM API provides and event notification scheme to notify the
application of significant sender and receiver events. There are also a number support
functions provided for the application to control and monitor its participation within a
NORM transport session.

API Initialization
The NORM API requires that an application explicitly create at least one instance of the
NORM protocol engine which is subsequently used as a conduit for further NORM API
calls. By default, the NORM protocol engine runs in its own operating system thread and
interacts with the application in a thread-safe manner through the API calls and event
dispatching mechanism.

 6

In general, only a single thread should access the NormGetNextEvent() API call for
a given NormInstance. This function serves as the conduit for delivering NORM
protocol engine events to the application. A NORM application can be designed to be
single-threaded, even with multiple active NormSessions, but also multiple API instances
can be created (see NormCreateInstance()) as needed for applications with
specific requirements for accessing and controlling participation in multiple
NormSessions from separate operating system multiple threads. Or, alternatively, a
single NormInstance could be used, with a "master thread" serving as an intermediary
between the NormGetNextEvent() function, demultiiplexing and dispatching events
as appropriate to other "child threads" that are created to handle "per-NormSession"
input/output. The advantage of this alternative approach is that the end result would be
one NORM protocol engine thread plus one "master thread" plus one "child thread" per
NormSession instead of two threads (protocol engine plus application thread) per
NormSession if such multi-threaded operation is needed by the application.

Session Creation and Control
Once an API instance has been successfully created, the application may then create
NORM transport session instances as needed. The application can participate in each
session as a sender and/or receiver of data. If an application is participating as a sender,
it may enqueue data transport objects for transmission. The control of transmission is
largely left to the senders and API calls are provided to control transmission rate, FEC
parameters, etc. Applications participating as receivers will be notified via the NORM
API's event dispatching mechanism of pending and completed reliable reception of data
along with other significant events. Additionally, API controls for some optional NORM
protocol mechanisms, such as positive acknowledgment collection, are also provided.
Note when multiple senders are involved, receivers allocate system resources (buffer
space) for each active sender. With a very large number of concurrently active senders,
this may translate to significant memory allocation on receiver nodes. Currently, the API
allows the application to control how much buffer space is allocated for each active
sender (NOTE: In the future, API functions may be provided limit the number of active
senders monitored and/or provide the application with finer control over receive buffer
allocation, perhaps on a per sender basis).

Data Transport
The NORM protocol supports transport of three basic types of data content. These
include the types NORM_OBJECT_FILE and NORM_OBJECT_DATA which represent
predetermined, fixed-size application data content. The only differentiation with respect
to these two types is the implicit “hint” to the receiver to use non-volatile (i.e. file
system) storage or memory. This “hint” lets the receiver allocate appropriate storage
space with no other information on the incoming data. The NORM implementation
reads/writes data for the NORM_OBJECT_FILE type directly from/to file storage, while
application memory space is accessed for the NORM_OBJECT_DATA type. The third
data content type, NORM_OBJECT_STREAM, represents unbounded, possibly persistent,
streams of data content. Using this transport paradigm, traditional, byte-oriented
streaming transport service (e.g. similar to that provided by a TCP socket) can be

 7

provided. Additionally, NORM has provisions for application-defined message-oriented
transport where receivers can recover message boundaries without any “handshake” with
the sender. Stream content is buffered by the NORM implementation for
transmission/retransmission and as it is received.

Data Transmission
The behavior of data transport operation is largely placed in the control of the NORM
sender(s). NORM senders controls their data transmission rate, forward error correction
(FEC) encoding settings, and parameters controlling feedback from the receiver group.
Multiple senders may operate in a session, each with independent transmission
parameters. NORM receivers learn needed parameter values from fields in NORM
message headers.
NORM transport “objects” (file, data, or stream) are queued for transmission by NORM
senders. NORM senders may also cancel transmission of objects at any time. The
NORM sender controls the transmission rate either manually (fixed transmission rate) or
automatically when NORM congestion control operation is enabled. The NORM
congestion control mechanism is designed to be "friendly" to other data flows on the
network, fairly sharing available bandwidth.
By default, the NORM sender transmits application-enqueued data content, providing
repair transmissions (usually in the form of FEC messages) only when requested by
NACKs from the receivers. However, the application may also configure NORM to
proactively send some amount of FEC content along with the original data content to
create a "robust" transmission that, in some cases, may be reliably received without any
NACKing activity. This can allow for some degree of reliable protocol operation even
without receiver feedback available. NORM senders may also requeue (within the limits
of "transmit cache" settings) objects for repeat transmission, and receivers may combine
together multiple transmissions to reliably receive content. Additionally, hybrid
proactive/reactive FEC repair operation is possible with the receiver NACK process as a
"backup" for when network packet loss exceeds the repair capability of the proactive FEC
settings.
The NRL NORM implementation also supports optional collection of positive
acknowledgment from a subset of the receiver group at application-determined positions
during data transmission. The NORM API allows the application to specify the receiver
subset ("acking node list") and set "watermark" points for which positive
acknowledgement is collected. This process can provide the application with explicit
flow control for an application-determined critical set of receivers in the group.
For a NORM application to perform data transmission, it must first create a session using
NormCreateSession() and make a call to NormStartSender() before sending
actual user data. The functions NormEnqueueFile(), NormEnqueueData(), and
NormStreamWrite() are available for the application to pass data to the NORM
protocol engine for transmission. Note that to use NormStreamWrite(), a "sender
stream" must first be created using NormStreamOpen().
The calls to enqueue transport objects or write to a stream may be called at any time, but
the NORM_TX_QUEUE_EMPTY and NORM_TX_QUEUE_VACANCY notification events

 8

(see NormGetNextEvent()) provide useful cues for when these functions may be
successfully called. Typically, an application might catch both
NORM_TX_QUEUE_EMPTY and NORM_TX_QUEUE_VACANCY event types as cues for
enqueuing additional transport objects or writing to a stream. However, an application
may choose to cue off of NORM_TX_QUEUE_EMPTY only if it wishes to provide the
"freshest" data to NORM for transmission. The advantage of additionally using
NORM_TX_QUEUE_VACANCY is that if the application uses this cue to fill up NORM
transport object or stream buffers, it can keep the NORM stream busy sending data and
realize the highest possible transmission rate when attempting very high speed
communication (Otherwise, the NORM protocol engine may experience some "dead air
time" waiting for the application thread to respond to a NORM_TX_QUEUE_EMPTY
event). Note the sender application can control buffer depths as needed with the
NormSetTransmitCacheBounds() and NormStreamOpen() calls.
Another cue that can be leveraged by the sender application to determine when it is
appropriate to enqueue (or write) additional data for transmission is the
NORM_TX_WATERMARK_COMPLETED event. This event is posted when the flushing or
explicit positive acknowledgment collection process has completed for a "watermark"
point in transmission that was set by the sender (see NormSetWatermark() and
NormAddAckingNode()). A list of NormNodeIds can be supplied from which
explicit acknowledgement is expected and/or the NormNodeId NORM_NODE_NONE
can be set (using NormAddAckingNode()) for completion of a NACK-based version
of the watermark flushing procedure. This flushing process can be used as a flow control
mechanism for NORM applications. Note this is distinct from NORM's congestion
control mechanism that, while it provides network-friendly transmission rate control,
does guarantee flow control to receiving nodes.

Data Reception
NORM receiver applications learn of active senders and their corresponding pending and
completed data transfers, etc via the API event dispatching mechanism. By default,
NORM receivers use NACK messages to request repair of transmitted content from the
originating sender as needed to achieve reliable transfer. Some API functions are
available to provide some additional control over the NACKing behavior, such as
initially NACKing for NORM_INFO content only or even to the extent of disabling
receiver feedback (silent receiver or emission-controlled (EMCON) operation) entirely.
Otherwise, the parameters and operation of reliable data transmission are left to sender
applications and receivers learn of sender parameters in NORM protocol message
headers and are instructed by NORM_CMD messages from the sender(s).

API Event Notification
An asynchronous event dispatching mechanism is provided to notify the application of
significant NORM protocol events. The centerpiece of this is the
NormGetNextEvent() function which can be used to retrieve the next NORM
protocol engine event in the form of a NormEvent structure. This function will
typically block until a NormEvent occurs. However, non-blocking operation may be
achieved by using the NormGetDescriptor() call to get a value (file descriptor

 9

(Unix) or HANDLE (Win32) suitable for use in a asynchronous I/O monitoring functions
such as select() (Unix) or MsgWaitForMultipleObjects() (Win32). The descriptor will be
signaled when a NormEvent is available. For Win32 platforms, dispatching of a user-
defined Windows message for NORM event notification is also planned for a future
update to the API.

Build Notes
To build applications that use the NORM library, a path to the "normApi.h" header file
must be provided and the linker step needs to reference the NORM library file
("libnorm.a" for Unix platforms and "Norm.lib" for Win32 platforms). NORM also
depends upon the NRL Protean Protocol Prototyping toolkit "Protokit" library (a.k.a
"Protolib") (static library files "libProtokit.a" for Unix and "Protokit.lib" for Win32).
Shared or dynamically-linked versions of these libraries may also be built from the
NORM source code or provided. Depending upon the platform, some additional library
dependencies may be required to support the needs of NORM and/or Protokit. These are
described below.

Unix Platforms
NORM has been built and tested on Linux (various architectures), MacOS (BSD),
Solaris, and IRIX (SGI) platforms. The code should be readily portable to other Unix
platforms.
To support IPv6 operation, the NORM and the Protokit library must be compiled with the
"HAVE_IPV6" macro defined. This is default in the NORM and Protokit Makefiles for
platforms that support IPv6. It is important that NORM and Protokit be built with this
macro defined the same. With NORM, it is recommended that "large file support"
options be enabled when possible.
The NORM API uses threading so that the NORM protocol engine may run independent
of the application. Thus the "POSIX Threads" library must be included ("-'pthread") in
the linking step. MacOS/BSD also requires the addition of the "-lresolv" (resolver)
library and Solaris requires the dynamic loader, network/socket, and resolver libraries ("–
lnsl –lsocket –lresolv") to achieve successful compilation. The Makefiles in the NORM
source code distribution are a reference for these requirements. Note that MacOS 9 and
earlier are not supported.
Additionally, it is critical that the _FILE_OFFSET_BITS macro be consistently defined
for the NORM library build and the application build using the library. The distributed
NORM Makefiles have –D_FILE_OFFSET_BITS=64 set in the compilation to enable
"large file support". Applications built using NORM should have the same compilation
option set to operate correctly (The definition of the NormSize type in "normApi.h"
depends upon this compilation flag).

Win32/WiNCE Platforms
NORM has been built using Microsoft's Visual C++ (6.0 and .NET) and Embedded
VC++ 4.2 environments. In addition to proper macro definitions (e.g., HAVE_IPV6, etc)

 10

that are included in the respective "Protokit" and "NORM" project files, it is important
that common code generation settings be used when building the NORM application.
The NORM and Protokit projects are built with the "Multithreading DLL" library usage
set. The NORM API requires multithreading support. This is a critical setting and
numerous compiler and linker errors will result if this is not properly set for your
application project.
NORM and Protokit also depend on the Winsock 2.0 ("ws2_32.lib" (or "ws2.lib"
(WinCE)) and the IP Helper API ("iphlpapi.lib") libraries and these must be included in
the project "Link" attributes.
An additional note is that a bug in VC++ 6.0 and earlier compilers (includes embedded
VC++ 4.x compilers) prevent compilation of Protokit-based code with debugging
capabilities enabled. However, this has been resolved in VC++ .NET and is hoped to be
resolved in the future for the WinCE build tools.
Operation on Windows NT4 (and perhaps other older Windows operating systems)
requires that the compile time macro WINVER=0x0400 defined. This is because the
version of the IP Helper API library (iphlpapi.lib) used by Protolib (and hence NORM)
for this system doesn't support some of the functions defined for this library. This may
be related to IPv6 support issues so it may be possible that the Protolib build could be
tweaked to provide a single binary executable suitable for IPv4 operation only across a
large range of Windows platforms.

API Reference
This section provides a reference to the NORM API variable types, constants and
functions.

API Variable Types and Constants
The NORM API defines and enumerates a number of supporting variable types and
values which are used in different function calls. The variable types are described here.

NormInstanceHandle

The NormInstanceHandle type is returned when a NORM API instance is created
(see NormCreateInstance()). This handle can be subsequently used for API calls
which require reference to a specific NORM API instance. By default, each NORM API
instance instantiated creates an operating system thread for protocol operation. Note that
multiple NORM transport sessions may be created for a single API instance. In general,
it is expected that applications will create a single NORM API instance, but some multi-
threaded application designs may prefer multiple corresponding NORM API instances.
The value NORM_INSTANCE_INVALID corresponds to an invalid API instance.

NormSessionHandle

The NormSessionHandle type is used to reference NORM transport sessions which
have been created using the NormCreateSession() API call. Multiple
NormSessionHandles may be associated with a given NormInstanceHandle.

 11

The special value NORM_SESSION_INVALID is used to refer to invalid session
references.

NormSessionId

The NormSessionId type is used by applications to uniquely identify their instance of
participation as a sender within a NormSession. This type is a parameter to the
NormStartSender() function. Robust applications can use different
NormSessionId values when initiating sender operation so that receivers can
discriminate when a sender has terminated and restarted (whether intentional or due to
system failure). For example, an application could cache its prior NormSessionId
value in non-volatile storage which could then be recovered and incremented (for
example) upon system restart to produce a new value. The NormSessionId value is
used for the value of the instance_id field in NORM protocol sender messages (see the
NORM protocol specification) and receivers use this field to detect sender restart within a
NormSession.

NormNodeHandle

The NormNodeHandle type is used to reference state kept by the NORM
implementation with respect to other participants within a NormSession. Most typically,
the NormNodeHandle is used by receiver applications to dereference information
about remote senders of data as needed. The special value NORM_NODE_INVALID
corresponds to an invalid reference.

NormNodeId

The NormNodeId type corresponds to a 32-bit numeric value which should uniquely
identify a participant (node) in a given NormSession. The NormNodeGetId()
function can be used to retrieve this value given a valid NormNodeHandle. The
special value NORM_NODE_NONE corresponds to an invalid (or null) node while the
value NORM_NODE_ANY serves as a wildcard value for some functions.

NormObjectHandle

The NormObjectHandle type is used to reference state kept for data transport objects
being actively transmitted or received. The state kept for NORM transport objects is
temporary, but the NORM API provides a function to persistently retain state associated
with a sender or receiver NormObjectHandle (see NormObjectRetain()) if
needed. For sender objects, unless explicitly retained, the NormObjectHandle can be
considered valid until the referenced object is explicitly canceled (see
NormObjectCancel()) or purged from the sender transmission queue (see the event
NORM_TX_OBJECT_PURGED). For receiver objects, these handles should be treated as
valid only until a subsequent call to NormGetNextEvent() unless, again, specifically
retained. The special value NORM_OBJECT_INVALID corresponds to an invalid
transport object reference.

 12

NormObjectType

The NormObjectType type is an enumeration of possible NORM data transport object
types. As previously mentioned, valid types include:

1) NORM_OBJECT_FILE

2) NORM_OBJECT_DATA, and
3) NORM_OBJECT_STREAM

Given a NormObjectHandle, the application may determine an object's type using the
NormObjectGetType() function call. A special NormObjectType value,
NORM_OBJECT_NONE, indicates an invalid object type.

NormSize

The NormSize is the type used for NormObject size information. For example, the
NormObjectGetSize() function returns a value of type NormSize. The range of
NormSize values depends upon the operating system and NORM library compilation
settings. With "large file support" enabled, as is the case with distributed NORM library
"Makefiles", the NormSize type is a 64-bit integer. However, some platforms may
support only 32-bit object sizes.

NormObjectTransportId

The NormObjectTransportId type is a 16-bit numerical value assigned to
NormObjects by senders during active transport. These values are temporarily unique
with respect to a given sender within a NormSession and may be "recycled" for use for
future transport objects. NORM sender nodes assign these values in a monotonically
increasing fashion during the course of a session as part of protocol operation. Typically,
the application should not need access to these values, but an API call
NormObjectGetTransportId() is provided to retrieve these values if needed.
(Note this type may be deprecated – it may not be needed at all if the
NormObjectRequeue() function (TBD) is implemented using handles only, but _some_
applications requiring persistence even after a system reboot may need the ability to
recall previous transport ids?)

NormEventType

The NormEventType is an enumeration of NORM API events. "Events" are used by
the NORM API to signal the application of significant NORM protocol operation events
(e.g., receipt of a new receive object, etc). A description of possible NormEventType
values and their interpretation is given below. The function call
NormGetNextEvent() is used to retrieve events from the NORM protocol engine.

NormEvent

The NormEvent type is a structure used to describe significant NORM protocol events.
This structure is defined as follows:

 13

typedef struct
{
 NormEventType type;
 NormSessionHandle session;
 NormNodeHandle node;
 NormObjectHandle object;
} NormEvent;

The type field indicates the NormEventType and determines how the other fields
should be interpreted. Note that not all NormEventType fields are relevant to all
events. The session, node, and object fields indicate the applicable
NormSessionHandle, NormNodeHandle, and NormObjectHandle,
respectively, to which the event applies. NORM protocol events are made available to
the application via the NormGetNextEvent() function call.

NormDescriptor

The NormDescriptor type provides reference to a file descriptor (Unix) or HANDLE
(Win32). For a given NormInstanceHandle, the NormGetDescriptor()
function can be used to retrieve a NormDescriptor value that may, in turn, used in
appropriate system calls (e.g. select() or MsgWaitForMultipleObjects()) to
asynchronously monitor the NORM protocol engine for notification events (see
NormEvent description).

NormFlushMode

The NormFlushMode type consists of the following enumeration:
enum NormFlushMode
{
 NORM_FLUSH_NONE,
 NORM_FLUSH_PASSIVE,
 NORM_FLUSH_ACTIVE
};

The interpretation of these values is given in the descriptions of
NormStreamFlush() and NormStreamSetAutoFlush() functions.

NormProbingMode

The NormProbingMode type consists of the following enumeration:
enum NormProbingMode
{
 NORM_PROBE_NONE,
 NORM_PROBE_PASSIVE,
 NORM_PROBE_ACTIVE
};

The interpretation of these values is given in the description of
NormSetGrttProbingMode() function.

NormNackingMode

The NormNackingMode type consists of the following enumeration:

 14

enum NormNackingMode
{
 NORM_NACK_NONE,
 NORM_NACK_INFO_ONLY,
 NORM_NACK_NORMAL
};

The interpretation of these values is given in the descriptions of the
NormSetDefaultNackingMode(), NormNodeSetNackingMode() and
NormObjectSetNackingMode() functions.

NormRepairBoundary

The NormRepairBoundary types consists of the following enumeration:
enum NormRepairBoundary
{
 NORM_BOUNDARY_BLOCK,
 NORM_BOUNDARY_OBJECT
};

The interpretation of these values is given in the descriptions of the
NormSetDefaultRepairBoundary() and
NormNodeSetRepairBoundary() functions.

NormAckingStatus

The NormAckingStatus consist of the following enumeration:
enum NormAckingStatus
{
 NORM_ACK_INVALID,
 NORM_ACK_FAILURE,
 NORM_ACK_PENDING,
 NORM_ACK_SUCCESS
};

The interpretation of these values is given in the descriptions of the
NormGetAckingStatus() function.

API Initialization and Operation
The first step in using the NORM API is to create an "instance" of the NORM protocol
engine. Note that multiple instances may be created by the application if necessary, but
generally only a single instance is required since multiple NormSessions may be managed
under a single NORM API instance.

 15

NormCreateInstance()

Synopsis
#include <normApi.h>

NormInstanceHandle NormCreateInstance(bool priorityBoost = false);

Description
This function creates an instance of a NORM protocol engine and is the necessary first
step before any other API functions may be used. With the instantiation of the NORM
protocol engine, an operating system thread is created for protocol execution. The
returned NormInstanceHandle value may be used in subsequent API calls as
needed, such NormCreateSesssion(), etc. The optional priorityBoost
parameter, when set to a value of true, specifies that the NORM protocol engine thread
be run with higher priority scheduling. On Win32 platforms, this corresponds to
THREAD_PRIORITY_TIME_CRITICAL and on Unix systems with the
sched_setscheduler() API, an attempt to get the maximum allowed
SCHED_FIFO priority is made. The use of this option should be carefully evaluated
since, depending upon the application's scheduling priority and NORM API usage, this
may have adverse effects instead of a guaranteed performance increase!

Return Values
A value of NORM_INSTANCE_INVALID is returned upon failure. The function will
only fail if system resources are unavailable to allocate the instance and/or create the
corresponding thread.

NormDestroyInstance()

Synopsis
#include <normApi.h>

void NormDestroyInstance(NormInstanceHandle instance);

Description
The NormDestroyInstance() function immediately shuts down and destroys the
NORM protocol engine instance referred to by the instance parameter. The
application should make no subsequent references to the indicated
NormInstanceHandle or any other API handles or objects associated with it.
However, the application is still responsible for releasing any object handles it has
retained (see NormObjectRetain() and NormObjectRelease()).

Return Values
The function has no return value.

 16

NormStopInstance()

Synopsis
#include <normApi.h>

void NormStopInstance(NormInstanceHandle instance);

Description
This function immediately stops the NORM protocol engine thread corresponding to the
given instance parameter. It also posts a "dummy" notification event so that if
another thread is blocked on a call to NormGetNextEvent(), that thread will be
released. Hence, for some multithreaded uses of the NORM API, this function may be
useful as a preliminary step to safely coordinate thread shutdown before a call is made to
NormDestroyInstance(). After NormStopInstance() is called and any
pending events posted prior to its call have been retrieved, NormGetNextEvent()
will return a value of false.
When this function is invoked, state for any NormSessions associated with the given
instance is "frozen". The complementary function, NormRestartInstance()
can be subsequently used to "unfreeze" and resume NORM protocol operation (a new
thread is created and started).

Return Values
The function has no return value.

NormRestartInstance()

Synopsis
#include <normApi.h>

bool NormRestartInstance(NormInstanceHandle instance);

Description
This function creates and starts an operating system thread to resume NORM protocol
engine operation for the given instance that was previously stopped by a call to
NormStopInstance(). It is not expected that this function will be used often, but
there may be special application cases where "freezing" and later resuming NORM
protocol operation may be useful.

Return Values
The function returns true when the NORM protocol engine thread is successfully
restarted, and false otherwise.

 17

NormSetCacheDirectory()

Synopsis
#include <normApi.h>

bool NormSetCacheDirectory(NormInstanceHandle instance,
 const char* cachePath);

Description
This function sets the directory path used by receivers to cache newly-received
NORM_OBJECT_FILE objects. This function must be called before any file objects may
be received and thus should be called before any calls to NormStartReceiver() are
made. However, note that the cache directory may be changed even during active
NORM reception. In this case, the new specified directory path will be used for
subsequently-received files. Any files received before a directory path change will
remain in the previous cache location. Note that the NormFileRename() function
may be used to rename, and thus potentially move, received files after reception has
begun.
The instance parameter specifies the NORM protocol engine instance (all
NormSessions associated with that instance share the same cache path) and the
cachePath is a string specifying a valid (and writable) directory path. The function
returns true on success and false on failure. The failure conditions are that the
indicated directory does not exist or the process does not have permissions to write.

NormGetNextEvent()

Synopsis
#include <normApi.h>

bool NormGetNextEvent(NormInstanceHandle instance,
 NormEvent* theEvent);

Description
This function retrieves the next available NORM protocol event from the protocol
engine. The instance parameter specifies the applicable NORM protocol engine, and
the theEvent parameter must be a valid pointer to a NormEvent structure capable of
receiving the NORM event information. For expected reliable protocol operation, the
application should make every attempt to retrieve and process NORM notification events
in a timely manner.
Note that this is currently the only blocking call in the NORM API. But non-blocking
operation may be achieved by using the NormGetDescriptor() function to obtain a
descriptor (or HANDLE for WIN32) suitable for asynchronous input/output (I/O)
notification using such system calls as select() (UNIX) or
WaitForMultipleObjects() (WIN32). The descriptor is signaled when a
notification event is pending and a call to NormGetNextEvent() will not block.

 18

NORM Notification Event Types
The following table enumerates the possible NormEvent values and describes how
these notifications should be interpreted as they are retrieved by the application via the
NormGetNextEvent() function call.
Sender Notification Event Types:
NORM_TX_QUEUE_VACANCY This event indicates that there is room for

additional transmit objects to be enqueued,
or, if the handle of
NORM_OBJECT_STREAM is given in the
corresponding event "object" field, the
application may successfully write to the
indicated stream object. Note this event is
not dispatched until a call to
NormEnqueueFile(),
NormEnqueueData(), or
NormStreamWrite() fails because of a
filled transmit cache or stream buffer.

NORM_TX_QUEUE_EMPTY This event indicates the NORM protocol
engine has no new data pending transmission
and the application may enqueue additional
objects for transmission. If the handle of a
sender NORM_OBJECT_STREAM is given in
the corresponding event "object" field, this
indicates the stream transmit buffer has been
emptied and the sender application may write
to the stream (Use of
NORM_TX_QUEUE_VACANCY may be
preferred for this purpose since it allows the
application to keep the NORM protocol
engine busier sending data, resulting in
higher throughput when attempting very high
transfer rates).

 19

NORM_TX_FLUSH_COMPLETED This event indicates that the flushing process
the NORM sender observes when it no
longer has data ready for transmission has
completed. The completion of the flushing
process is a reasonable indicator (with a
sufficient NORM "robust factor" value) that
the receiver set no longer has any pending
repair requests. Note the use of NORM's
optional positive acknowledgement feature is
more deterministic in this regards, but this
notification is useful when there are non-
acking (NACK-only) receivers. The default
NORM robust factor of 20 (20 flush
messages are sent at end-of-transmission)
provides a high assurance of reliable
transmission, even with packet loss rates of
50%.

NORM_TX_WATERMARK_COMPLETED This event indicates that the flushing process
initiated by a prior application call to
NormSetWatermark() has completed
The posting of this event indicates the
appropriate time for the application to make
a call NormGetAckingStatus() to
determine the results of the watermark
flushing process.

NORM_TX_OBJECT_SENT This event indicates that the transport object
referenced by the event's "object" field has
completed at least one pass of total
transmission. Note that this does not
guarantee that reliable transmission has yet
completed; only that the entire object content
has been transmitted. Depending upon
network behavior, several rounds of
NACKing and repair transmissions may be
required to complete reliable transfer.

 20

NORM_TX_OBJECT_PURGED This event indicates that the NORM protocol
engine will no longer refer to the transport
object identified by the event's "object' field.
Typically, this will occur when the
application has enqueued more objects than
space available within the set sender transmit
cache bounds (see
NormSetTransmitCacheBounds()).
Posting of this notification means the
application is free to free any resources
(memory, files, etc) associated with the
indicated "object". After this event, the
given "object" handle
(NormObjectHandle) is no longer valid
unless it is specifically retained by the
application.

NORM_LOCAL_SENDER_CLOSED This event is posted when the NORM
protocol engine completes the "graceful
shutdown" of its participation as a sender in
the indicated "session" (see
NormStopSender()).

NORM_CC_ACTIVE This event indicates that congestion control
feedback from receivers has begun to be
received (This also implies that receivers in
the group are actually present and can be
used as a cue to begin data transmission.).
Note that congestion control must be enabled
(see NormSetCongestionControl())
for this event to be posted. Congestion
control feedback can be assumed to be
received until a NORM_CC_INACTIVE
event is posted.

NORM_CC_INACTIVE This event indicates there has been no recent
congestion control feedback received from
the receiver set and that the local NORM
sender has reached its minimum transmit
rate. Applications may wish to refrain from
new data transmission until a
NORM_CC_ACTIVE event is posted. This
notification is only posted when congestion
control operation is enabled (see
NormSetCongestionControl()) and
a previous NORM_CC_ACTIVE event has
occurred.

 21

Receiver Notification Event Types:
NORM_REMOTE_SENDER_NEW This event is posted when a receiver first

receives messages from a specific remote
NORM sender. This marks the beginning of
the interval during which the application may
reference the provided "node" handle
(NormNodeHandle).

NORM_REMOTE_SENDER_ACTIVE This event is posted when a previously
inactive (or new) remote sender is detected
operating as an active sender within the
session.

NORM_REMOTE_SENDER_INACTIVE This event is posted after a significant period
of inactivity (no sender messages received)
of a specific NORM sender within the
session. The NORM protocol engine frees
buffering resources allocated for this sender
when it becomes inactive.

NORM_REMOTE_SENDER_PURGED This event is posted when the NORM
protocol engine frees resources for, and thus
invalidates the indicated "node" handle.

NORM_RX_OBJECT_NEW This event is posted when reception of a new
transport object begins and marks the
beginning of the interval during which the
specified "object" (NormObjectHandle)
is valid.

NORM_RX_OBJECT_INFO This notification is posted when the
NORM_INFO content for the indicated
"object" is received.

NORM_RX_OBJECT_UPDATED This event indicates that the identified
receive "object" has newly received data
content.

NORM_RX_OBJECT_COMPLETED This event is posted when a receive object is
completely received, including available
NORM_INFO content. Unless the
application specifically retains the "object"
handle, the indicated NormObjectHandle
becomes invalid and must no longer be
referenced.

 22

NORM_RX_OBJECT_ABORTED This notification is posted when a pending
receive object's transmission is aborted by
the remote sender. Unless the application
specifically retains the "object" handle, the
indicated NormObjectHandle becomes
invalid and must no longer be referenced.

Miscellaneous Notification Event Types
NORM_GRTT_UPDATED This notification indicates that either the

local sender estimate of GRTT has changed,
or that a remote sender's estimate of GRTT
has changed. The "sender" member of the
NormEvent is set to
NORM_NODE_INVALID if the local sender's
GRTT estimate has changed or to the
NormNodeHandle of the remote sender
that has updated its estimate of GRTT.

NORM_EVENT_INVALID This NormEventType indicates an invalid
or "null" notification which should be
ignored.

Return Values
This function generally blocks the thread of application execution until a NormEvent is
available and returns true when a NormEvent is available. However, there are some
exceptional cases when the function may immediately return even when no event is
pending. In these cases, the return value is false.
WIN32 Note: A future version of this API will provide an option to have a user-defined
Window message posted when a NORM API event is pending. (Also some event filtering
calls may be provided (e.g. avoid the potentially numerous
NORM_RX_OBJECT_UPDATED events if not needed by the application)).

NormGetDescriptor()

Synopsis
#include <normApi.h>

NormDescriptor NormGetDescriptor(NormInstanceHandle instance);

Description
This function is used to retrieve a NormDescriptor (integer file descriptor (UNIX) or
HANDLE (WIN32)) suitable for asynchronous I/O notification to avoid blocking calls to
NormGetNextEvent(). A NormDescriptor is available for each protocol engine
instance. The descriptor (or WIN32 HANDLE) is suitable for use as an input (or

 23

"read") descriptor which is signaled when a NORM protocol event is ready for retrieval
via NormGetNextEvent(). Hence, a call to NormGetNextEvent() will not
block when the descriptor has been signaled. The select() system call (UNIX) (or
WaitForMultipleObjects() (WIN32)) can be used to detect when the returned
NormDescriptor is signaled. For the select() call usage, the NORM descriptor
should be treated as a "read" descriptor.

Return Values
A descriptor is returned which is valid until a call to NormDestroyInstance() is
made. Upon error, a value of NORM_DESCRIPTOR_INVALID is returned.

Session Creation and Control Functions
Whether participating in a NORM protocol session as a sender, receiver, or both, there
are some common API calls used to instantiate a NormSession and set some common
session parameters. Functions are provided to control network socket and multicast
parameters. Additionally, a "user data" value may be associated with a
NormSessionHandle for programming convenience when dealing with multiple
sessions.

NormCreateSession()

Synopsis
#include <normApi.h>

NormSessionHandle NormCreateSession(NormInstanceHandle instance,
 const char* address,
 unsigned short port,
 NormNodeId localId);

Description
This function creates a NORM protocol session (NormSession) using the address
(multicast or unicast) parameters provided. While session state is allocated and
initialized, active session participation does not begin until a call is made to
NormStartSender() and/or NormStartReceiver() to join the specified
multicast group (if applicable) and start protocol operation. The following parameters are
required in this function call:
instance This must be a valid NormInstanceHandle previously obtained

with a call to NormCreateInstance().
address This points to a string containing an IP address (e.g. dotted decimal

IPv4 address (or IPv6 address) or name resolvable to a valid IP address.
The specified address (along with the port number) determines the
destination of NORM messages sent. For multicast sessions, NORM
senders and receivers must use a common multicast address and port
number. For unicast sessions, the sender and receiver must use a
common port number, but specify the other node's IP address as the

 24

session address (Although note that receiver-only unicast nodes who
are providing unicast feedback to senders will not generate any
messages to the session IP address and the address parameter value
is thus inconsequential for this special case).

port This must be a valid, unused port number corresponding to the desired
NORM session address. See the address parameter description for
more details.

localId The localId parameter specifies the NormNodeId that should be
used to identify the application's presence in the NormSession. All
participant's in a NormSession should use unique localId values.
The application may specify a value of NORM_NODE_ANY or
NORM_NODE_ANY for the localId parameter. In this case, the
NORM implementation will attempt to pick an identifier based on the
host computer's "default" IP address (based on the computer's default
host name). Note there is a chance that this approach may not provide
unique node identifiers in some situations and the NORM protocol does
not currently provide a mechanism to detect or resolve NormNodeId
collisions. Thus, the application should explicitly specify the
localId unless there is a high degree of confidence that the default
IP address will provide a unique identifier.

Return Values
The returned NormSessionHandle value is valid until a call to
NormDestroySession() is made. A value of NORM_SESSION_INVALID is
returned upon error.

NormDestroySession()

Synopsis
#include <normApi.h>

void NormDestroySession(NormSessionHandle session);

Description
This function immediately terminates the application's participation in the NormSession
identified by the session parameter and frees any resources used by that session. An
exception to this is that the application is responsible for releasing any explicitly retained
NormObjectHandles (See NormObjectRetain() and
NormObjectRelease()).

Return Values
This function has no returned values.

 25

NormSetUserData()

Synopsis
#include <normApi.h>

void NormSetUserData(NormSessionHandle session, const void* userData);

Description
This function allows the application to attach a value to the previously-created
NormSession instance specified by the session parameter. This value is not used or
interpreted by NORM, but is available to the application for use at the programmer's
discretion. The set userData value can be later retrieved using the
NormGetUserData() function call.

Return Values
This function has no returned values.

NormGetUserData()

Synopsis
#include <normApi.h>

const void* NormGetUserData(NormSessionHandle session);

Description
This function retrieves the "user data" value set for the specified session with a prior call
to NormSetUserData().

Return Values
This function returns the user data value set for the specified session. If no user data
value has been previously set a NULL (i.e., (const void*)0) value is returned.

NormGetLocalNodeId()

Synopsis
#include <normApi.h>

NormNodeId NormGetLocalNodeId(NormSessionHandle session);

Description
This function retrieves the NormNodeId value used for the application's participation in
the NormSession identified by the session parameter. The value may have been
explicitly set during the NormCreateSession() call or derived using the host
computer's "default" IP network address.

 26

Return Values
The returned value indicates the NormNode identifier used by the NORM protocol engine
for the local application's participation in the specified NormSession.

NormSetTxPort()

Synopsis
#include <normApi.h>

void NormSetTxPort(NormSessionHandle session,
 unsigned short txPort);

Description
This function is used to force NORM to use a specific port number for UDP packets sent
for the specified session. By default, NORM uses separate port numbers for packet
transmission and session packet reception (the receive port is specified as part of the
NormCreateSession() call), allowing the operating system to pick a freely
available port for transmission. This call allows the application to pick a specific port
number for transmission, and furthermore allows the application to even specify the same
port number for transmission as is used for reception. However, the use of separate
transmit/receive ports allows NORM to discriminate when unicast feedback is occurring
and thus it is not generally recommended that the transmit port be set to the same value as
the session receive port.
Note this call must be made before any calls to NormStartSender() or
NormStartReceiver() for the given session to succeed.

Return Values
This function has no return values.

NormSetRxPortReuse()

Synopsis
#include <normApi.h>

void NormSetRxPortReuse(NormSessionHandle session,
 bool enable,
 bool bindToSessionAddr = true);

Description
This function allows the user to control the port reuse and binding behavior for the
receive socket used for the given NORM session. When the enable parameter is set
to true, reuse of the NormSession port number is enabled, and, if the
bindToSessionAddr is also set to true (default), the underlying socket is also
bound (see the bind() system call) to the NormSession destination address instead of
the default behavior of binding to INADDR_ANY.

 27

When this call is not made, the default binding to IP address INADDR_ANY (equivalent
to when this call is made and bindToSessionAddr is set to false) allows the
NormSession receive socket to receive any multicast or unicast transmissions to the
session port number provided in the call to NormCreateSession(). This allows a
NORM receiver to receive from senders sending to a multicast session address or the
receiver's unicast address. Enabling port reuse and binding the session destination
address allows multiple NORM sessions on the same port number, but participating in
different multicast groups.
Note this call must be made before any calls to NormStartSender() or
NormStartReceiver() for the given session to succeed.
This call could also be used in conjunction with NormSetMulticastInterface()
so that multiple NormSessions, using the same port and multicast address, could
separately cover multiple network interfaces (and some sort of application-layer bridging
of reliable multicast could be realized if desired).

Return Values
This function has no return values.

NormSetMulticastInterface()

Synopsis
#include <normApi.h>

bool NormSetMulticastInterface(NormSessionHandle session,
 const char* interfaceName);

Description
This function specifies which host network interface is used for IP Multicast
transmissions and group membership. This should be called before any call to
NormStartSender() or NormStartReceiver() is made so that the IP multicast
group is joined on the proper host interface. However, if a call to
NormSetMulticastInterface() is made after either of these function calls, the
call will not affect the group membership interface, but only dictate that a possibly
different network interface is used for transmitted NORM messages. Thus, the code:
NormSetMulticastInterface(session, "interface1");
NormStartReceiver(session, ...);
NormSetMulticastInterface(session, "interface2");

will result in NORM group membership (i.e. multicast reception) being managed on
"interface1" while NORM multicast transmissions are made via "interface2".

Return Values
A return value of true indicates success while a return value of false indicates that
the specified interface was valid. This function will always return true if made before

 28

calls to NormStartSender() or NormStartReceiver(). However, those calls
may fail if an invalid interface is specified.

NormSetTTL()

Synopsis
#include <normApi.h>

bool NormSetTTL(NormSessionHandle session,
 unsigned char ttl);

Description
This function specifies the time-to-live (ttl) for IP Multicast datagrams generated by
NORM for the specified session. The IP TTL field limits the number of router "hops"
that a generated multicast packet may traverse before being dropped. For example, if
TTL is equal to one, the transmissions will be limited to the local area network (LAN) of
the host computers network interface. Larger TTL values should be specified to span
large networks. Also note that some multicast router configurations use artificial "TTL
threshold" values to constrain some multicast traffic to an administrative boundary. In
these cases. the NORM TTL setting must also exceed the router "TTL threshold" in order
for the NORM traffic to be allowed to exit the administrative area.

Return Values
A return value of true indicates success while a return value of false indicates that
the specified ttl could not be set. This function will always return true if made before
calls to NormStartSender() or NormStartReceiver(). However, those calls
may fail if the desired ttl value cannot be set..

NormSetTOS()

Synopsis
#include <normApi.h>

bool NormSetTOS(NormSessionHandle session,
 unsigned char tos);

Description
This function specifies the type-of-service (tos) field value used in IP Multicast
datagrams generated by NORM for the specified session. The IP TOS field value can
be used as an indicator that a "flow" of packets may merit special Quality-of-Service
(QoS) treatment by network devices. Users should refer to applicable QoS information
for their network to determine the expected interpretation and treatment (if any) of
packets with explicit TOS marking.

 29

Return Values
A return value of true indicates success while a return value of false indicates that
the specified tos could not be set. This function will always return true if made before
calls to NormStartSender() or NormStartReceiver(). However, those calls
may fail if the desired tos value cannot be set..

NormSetLoopback()

Synopsis
#include <normApi.h>

void NormSetLoopback(NormSessionHandle session,
 bool loopbackEnable);

Description
This function enables or disables loopback operation for the indicated NORM session.
If loopbackEnable is set to true, loopback operation is enabled which allows the
application to receive its own message traffic. Thus, an application which is both
actively receiving and sending may receive its own transmissions. Note it is expected
that this option would be principally be used for test purposes and that applications would
generally not need to transfer data to themselves. If loopbackEnable is false, the
application is prevented from receiving its own NORM message transmissions. By
default, loopback operation is disabled when a NormSession is created.

Return Values
This function has no return values.

NORM Sender Functions
The functions described in this section apply only to NORM sender operation.
Applications may participate strictly as senders or as receivers, or may act as both in the
context of a NORM protocol session. The NORM sender is responsible for most
parameters pertaining to its transmission of data. This includes transmission rate, data
segmentation sizes, FEC coding parameters, stream buffer sizes, etc.

 30

NormStartSender()

Synopsis
#include <normApi.h>

bool NormStartSender(NormSessionHandle sessionHandle
 NormSessionId sessionId
 unsigned long bufferSpace
 unsigned short segmentSize,
 unsigned char blockSize,
 unsigned char numParity);

Description
The application's participation as a sender within a specified NormSession begins when
this function is called. This includes protocol activity such as congestion control and/or
group round-trip timing (GRTT) feedback collection and application API activity such as
posting of sender-related NormEvents. The parameters required for this function call
include:
sessionHandle This must be a valid NormSessionHandle previously obtained

with a call to NormCreateSession().
sessionId Application-defined value used as the instance_id field of NORM

sender messages for the application's participation within a session.
Receivers can detect when a sender has terminated and restarted if
the application uses different sessionId values when initiating
sender operation. For example, a robust application could cache
previous sessionId values in non-volatile storage and gracefully
recover (without confusing receivers) from a total system shutdown
and reboot by using a new sessionId value upon restart.

bufferSpace This specifies the maximum memory space the NORM protocol
engine is allowed to use to buffer any sender calculated FEC
segments and repair state for the session. The optimum
bufferSpace value is function of the network topology
bandwidth*delay product and packet loss characteristics. If the
bufferSpace limit is too small, the protocol may operate less
efficiently as the sender is required to possibly recalculate FEC
parity segments and/or provide less efficient repair transmission
strategies (resort to explicit repair) when state is dropped due to
constrained buffering resources. However, note the protocol will
still provide reliable transfer. A large bufferSpace allocation is
safer at the expense of possibly committing more memory
resources.

segmentSize This parameter sets the maximum payload size (in bytes) of NORM
sender messages (not including any NORM message header fields).
A sender's segmentSize value is also used by receivers to limit
the payload content of some feedback messages (e.g.

 31

NORM_NACK message content, etc.) generated in response to that
sender. Note different senders within a NormSession may use
different segmentSize values. Generally, the appropriate
segment size to use is dependent upon the types of networks
forming the multicast topology, but applications may choose
different values for other purposes. Note that application designers
MUST account for the size of NORM message headers when
selecting a segmentSize. For example, the NORM_DATA
message header for a NORM_OBJECT_STREAM with full header
extensions is 48 bytes in length. In this case, the UDP payload size
of these messages generated by NORM would be up to (48 +
segmentSize) bytes.

blockSize This parameter sets the number of source symbol segments
(packets) per coding block, for the systematic Reed-Solomon FEC
code used in the current NORM implementation. For traditional
systematic block code "(n,k)" nomenclature, the blockSize value
corresponds to "k". NORM logically segments transport object data
content into coding blocks and the blockSize parameter
determines the number of source symbol segments (packets)
comprising a single coding block where each source symbol
segment is up to segmentSize bytes in length.. A given block's
parity symbol segments are calculated using the corresponding set
of source symbol segments. The maximum blockSize allowed
by the 8-bit Reed-Solomon codes in NORM is 255, with the further
limitation that (blockSize + numParity) ≤ 255.

numParity This parameter sets the maximum number of parity symbol
segments (packets) the sender is willing to calculate per FEC
coding block. The parity symbol segments for a block are
calculated from the corresponding blockSize source symbol
segments. In the "(n,k)" nomenclature mention above, the
numParity value corresponds to "n-k". A property of the Reed-
Solomon FEC codes used in the current NORM implementation is
that one parity segment can fill any one erasure (missing segment
(packet)) for a coding block. For a given blockSize, the
maximum numParity value is (255 – blockSize). However,
note that computational complexity increases significantly with
increasing numParity values and applications may wish to be
conservative with respect to numParity selection, given
anticipated network packet loss conditions and group size
scalability concerns. Additional FEC code options may be
provided for this NORM implementation in the future with
different parameters, capabilities, trade-offs, and computational
requirements.

These parameters are currently immutable with respect to a sender's participation within a
NormSession. Sender operation must be stopped (see NormStopSender()) and

 32

restarted with another call to NormStartSender() if these parameters require
alteration. The API may be extended in the future to support additional flexibility here, if
required. For example, the NORM protocol "sessionId" field may possibly be leveraged
to permit a node to establish multiple virtual presences as a sender within a NormSession
in the future. This would allow the sender to provide multiple concurrent streams of
transport, with possibly different FEC and other parameters if appropriate within the
context of a single NormSession. Again, this extended functionality is not yet supported
in this implementation.

Return Values
A value of true is returned upon success and false upon failure. The reasons failure
may occur include limited system resources or that the network sockets required for
communication failed to open or properly configure. (TBD – Provide a
NormGetError(NormSessionHandle session) function to retrieve a more
specific error indication for this and other functions.)

NormStopSender()

Synopsis
#include <normApi.h>

void NormStopSender(NormSessionHandle session,
 bool graceful = false);

Description
This function terminates the application's participation in a NormSession as a sender. By
default, the sender will immediately exit the session without notifying the receiver set of
its intention. However a "graceful shutdown" option is provided to terminate sender
operation gracefully, notifying the receiver set its pending exit with appropriate protocol
messaging. A NormEvent, NORM_LOCAL_SENDER_CLOSED, is dispatched when the
graceful shutdown process has completed.
(NOTE: The "graceful" parameter is currently not available, and the current
behavior of this API call corresponds to the default behavior of graceful = false).
The functionality described here will soon be supported in the API.

Return Values
This function has no return values.

 33

NormSetTransmitRate()

Synopsis
#include <normApi.h>

void NormSetTransmitRate(NormSessionHandle session,
 double rate);

Description
This function sets the transmission rate limit (in bits per second (bps)) used for
NormSender transmissions. For fixed-rate transmission of NORM_OBJECT_FILE or
NORM_OBJECT_DATA, this limit determines the data rate at which NORM protocol
messages and data content. For NORM_OBJECT_STREAM transmissions, this is the
maximum rate allowed for transmission. Note that the application will need to consider
the overhead of NORM protocol headers when determining an appropriate transmission
rate for its purposes. When NORM congestion control is enabled (see
NormSetCongestionControl()), the rate set here will be set, but congestion
control operation may quickly readjust the rate unless disabled.

Return Values
This function has no return values.

NormSetTxSocketBuffer()

Synopsis
#include <normApi.h>

bool NormSetTxSocketBuffer(NormSessionHandle session,
 unsigned int bufferSize);

Description
This function can be used to set a non-default socket buffer size for the UDP socket used
by the specified NORM session for data transmission. The bufferSize parameter
specifies the desired socket buffer size in bytes. Large transmit socket buffer sizes may
be necessary to achieve high throughput rates when NORM, as a user-space process, is
unable to precisely time its packet transmissions. Similarly, NORM receivers may need
to set large receive socket buffer sizes to achieve sustained high data rate reception (see
NormSetRxSocketBuffer()).

Return Values
This function returns true upon success and false upon failure. Possible failure
modes include an invalid session parameter, a call to NormStartReceiver() or
NormStartSender() has not yet been made for the session, or an invalid
bufferSize was given. Note some operating systems may require additional
configuration to use non-standard socket buffer sizes.

 34

NormSetCongestionControl()

Synopsis
#include <normApi.h>

void NormSetTransmitRate(NormSessionHandle session,
 bool enable);

Description
This function enables (or disables) the NORM sender congestion control operation for the
session designated by the session parameter. For best operation, this function should
be called before the call to NormStartSender() is made, but congestion control
operation can be dynamically enabled/disabled during the course of sender operation. If
the value of enable is true, congestion control operation is enabled while it is
disabled for enable equal to false. When congestion control operation is enabled,
the NORM sender automatically adjusts its transmission rate based on feedback from
receivers. If bounds on transmission rate have been set (see
NormSetTransmitRateBounds()) the rate adjustment will remain within any set
bounds. The rate set by NormSetTransmitRate() has no effect when congestion
control operation is enabled. NORM's congestion algorithm provides rate adjustment to
fairly compete for available network bandwidth with other TCP, NORM, or similarly
governed traffic flows.

Return Values
This function has no return values.

NormSetTransmitRateBounds()

Synopsis
#include <normApi.h>

bool NormSetTransmitRateBounds(NormSessionHandle session,
 double rateMin,
 double rateMax);

Description
This function sets the range of sender transmission rates within which the NORM
congestion control algorithm is allowed to operate. By default, the NORM congestion
control algorithm operates with no lower or upper bound on its rate adjustment. This
function allows this to be limited where rateMin corresponds to the minimum
transmission rate (bps) and rateMax corresponds to the maximum transmission rate.
One or both of these parameters may be set to values less than zero to remove one or both
bounds. For example "NormSetTransmitRate(session, -1.0, 64000.0)"
will set an upper limit of 64 kbps for the sender transmission rate with no lower bound.
These rate bounds apply only when congestion control operation is enabled (see
NormSetCongestionControl()). If the current congestion control rate falls

 35

outside of the specified bounds, the sender transmission rate will be adjusted to stay
within the set bounds.

Return Values
This function returns true upon success. If both rateMin and rateMax are greater
than or equal to zero, but (rateMax < rateMin), the rate bounds will remain unset or
unchanged and the function will return false.

NormSetTransmitCacheBounds()

Synopsis
#include <normApi.h>

void NormSetTransmitCacheBounds(NormSessionHandle session,
 NormSize sizeMax,
 unsigned int countMin,
 unsigned int countMax);

Description
This function sets limits that define the number and total size of pending transmit objects
a NORM sender will allow to be enqueued by the application. Setting these bounds to
large values means the NORM protocol engine will keep history and state for previously
transmitted objects for a larger interval of time (depending upon the transmission rate)
when the application is actively enqueueing additional objects in response to
NORM_TX_QUEUE_EMPTY notifications. This can allow more time for receivers
suffering degraded network conditions to make repair requests before the sender "purges"
older objects from its "transmit cache" when new objects are enqueued. A
NORM_TX_OBJECT_PURGED notification is issued when the enqueuing of a new
transmit object causes the NORM transmit cache to overflow, indicating the NORM
sender no longer needs to reference the designated old transmit object and the application
is free to release related resources as needed.
The sizeMax parameter sets the maximum total size, in bytes, of enqueued objects
allowed, providing the constraints of the countMin and countMax parameters are
met. The countMin parameter sets the minimum number of objects the application
may enqueue, regardless of the objects' sizes and the sizeMax value. For example, the
default sizeMax value is 20 Mbyte and the default countMin is 8, thus allowing the
application to always have at least 8 pending objects enqueued for transmission if it
desires, even if their total size is greater than 20 Mbyte. Similarly, the countMax
parameter sets a ceiling on how many objects may be enqueued, regardless of their total
sizes with respect to the sizeMax setting. For example, the default countMax value is
256, which means the application is never allowed to have more than 256 objects pending
transmission enqueued, even if they are 256 very small objects. Note that countMax
must be greater than or equal to countMin and countMin is recommended to be at
least two.
Note that in the case of NORM_OBJECT_FILE objects, some operating systems impose
limits (e.g. 256) on how many open files a process may have at one time and it may be

 36

appropriate to limit the countMax value accordingly. In other cases, a large
countMin or countMax may be desired to allow the NORM sender to act as virtual
cache of files or other data available for reliable transmission. Future iterations of the
NRL NORM implementation may support alternative NORM receiver "group join"
policies that would allow the receivers to request transmission of cached content.

Return Values
This function has no return value.

NormSetAutoParity()

Synopsis
#include <normApi.h>

void NormSetAutoParity(NormSessionHandle sessionHandle,
 unsigned char autoParity);

Description
This function sets the quantity of proactive "auto parity" NORM_DATA messages sent at
the end of each FEC coding block. By default (i.e., autoParity = 0), FEC content is
sent only in response to repair requests (NACKs) from receivers. But, by setting a non-
zero value for autoParity, the sender can automatically accompany each coding
block of transport object source data segments (NORM_DATA messages) with the set
number of FEC segments. The number of source symbol messages (segments) per FEC
coding block is determined by the blockSize parameter used when
NormStartSender() was called for the given sessionHandle.
The use of proactively-sent "auto parity" may eliminate the need for any receiver
NACKing to achieve reliable transfer in networks with low packet loss. However, note
that the quantity of "auto parity" set adds overhead to transport object transmission. In
networks with a predictable level of packet loss and potentially large round-trip times, the
use of "auto parity" may allow lower latency in the reliable delivery process. Also, its
use may contribute to a smaller amount of receiver feedback as only receivers with
exceptional packet loss may need to NACK for additional repair content.
The value of autoParity set must be less than or equal to the numParity parameter
set when NormStartSender() was called for the given sessionHandle.

Return Values
This function has no return values.

 37

NormGetGrttEstimate()

Synopsis
#include <normApi.h>

double NormGetGrttEstimate(NormSessionHandle session);

Description
This function returns the sender's current estimate(in seconds) of group round-trip timing
(GRTT) for the given NORM session. This function may be useful for applications to
leverage for other purposes the assessment of round-trip timing made by the NORM
protocol engine. For example, an application may scale its own timeouts based on
connectivity delays among participants in a NORM session. Note that the
NORM_GRTT_UPDATED event is posted (see NormGetNextEvent()) by the NORM
protocol engine to indicate when changes in the local sender or remote senders' GRTT
estimate occurs.

Return Values
This function returns the current sender group round-trip timing (GRTT) estimate (in
units of seconds). A value of -1.0 is returned if an invalid session value is provided.

NormSetGrttEstimate()

Synopsis
#include <normApi.h>

void NormSetGrttEstimate(NormSessionHandle session,
 double grtt);

Description
This function sets the sender's estimate of group round-trip timing (GRTT) for the given
NORM session. This function is expected to most typically used to initialize the
sender's GRTT estimate prior to the call to NormStartSender() when the
application has a priori confidence that the default initial GRTT value of 0.5 second is
inappropriate. The sender GRTT estimate will be updated during normal sender protocol
operation after sender startup or if this call is made while sender operation is active. For
experimental purposes (or very special application needs), this API provides a
mechanism to control or disable the sender GRTT update process (see
NormSetGrttProbing()). The grtt value will be limited to the maximum GRTT
as set (see NormSetGrttMax()) or the default maximum of 10 seconds.
The sender GRTT is advertised to the receiver group and is used to scale various NORM
protocol timers. The default NORM GRTT estimation process dynamically measures
round-trip timing to determine an appropriate operating value. An overly-large GRTT
estimate can introduce additional latency into the reliability process (resulting in a larger
virtual delay*bandwidth product for the protocol and potentially requiring more buffer

 38

space to maintain reliability). An overly-small GRTT estimate may introduce the
potential for feedback implosion, limiting the scalability of group size.
Also note that the advertised GRTT estimate can also be limited by transmission rate.
When the sender transmission rate is low, the GRTT is also governed to a lower bound of
the nominal packet transmission interval (i.e., 1/txRate). This maintains the “event
driven” nature of the NORM protocol with respect to receiver reception of NORM sender
data and commands.

Return Values
This function has no return values.

NormSetGrttMax()

Synopsis
#include <normApi.h>

void NormSetGrttMax(NormSessionHandle session,
 double grttMax);

Description
This function sets the sender's maximum advertised GRTT value for the given NORM
session. The grttMax parameter, in units of seconds, limits the GRTT used by the
group for scaling protocol timers, regardless of larger measured round trip times. The
default maximum for the NRL NORM library is 10 seconds. See the
NormSetGrttEstimate() function description for the purpose of the NORM GRTT
measurement process.

Return Values
This function has no return values.

NormSetGrttProbingMode()

Synopsis
#include <normApi.h>

void NormSetGrttProbingMode(NormSessionHandle session,
 NormProbingMode probingMode);

Description
This function sets the sender's mode of probing for round trip timing measurement
responses from the receiver set for the given NORM session. Possible values for the
probingMode parameter include NORM_PROBE_NONE, NORM_PROBE_PASSIVE,
and NORM_PROBE_ACTIVE. The default probing mode is NORM_PROBE_ACTIVE.
In this mode, the receiver set explicitly acknowledges NORM sender GRTT probes
(NORM_CMD(CC) messages) with NORM_ACK responses that are group-wise

 39

suppressed. Note that NORM receivers also will include their response to GRTT probing
piggy-backed on any NORM_NACK messages sent in this mode as well to minimize
feedback.
Note that the NORM_PROBE_ACTIVE probing mode is required and automatically set
when NORM congestion control operation is enabled (see
NormSetCongestionControl()). Thus, when congestion control is enabled, the
NormSetGrttProbingMode() function has no effect.
If congestion control operation is not enabled, the NORM applicaiton may elect to reduce
the volume of feedback traffic by setting the probingMode to
NORM_PROBE_PASSIVE. Here, the NORM sender still transmits NORM_CMD(CC)
probe messages multiplexed with its data transmission, but the receiver set does not
explicitly acknowledge these probes. Instead the receiver set is limited to piggy-backing
responses when NORM_NACK messages are generated. Note that this may, in some
cases, introduce some opportunity for bursts of large volume receiver feedback when the
sender’s estimate of GRTT is incorrect due to the reduced probing feedback. But, in
some controlled network environments, this option for passive probing may provide some
benefits in reducing protocol overhead.
Finally, the probingMode can be set to NORM_PROBE_NONE to eliminate the
overhead (and benefits) of NORM GRTT measurement entirely. In this case, the sender
application must explicitly set its estimate of GRTT using the
NormSetGrttEstimate() function. See this function for a description of the
purpose of the NORM GRTT measurement.

Return Values
This function has no return values.

NormSetGrttProbingInterval()

Synopsis
#include <normApi.h>

void NormSetGrttProbingInterval(NormSessionHandle session,
 double intervalMin,
 double intervalMax);

Description
This function controls the sender GRTT measurement and estimation process for the
given NORM session. The NORM sender multiplexes periodic transmission of
NORM_CMD(CC) messages with its ongoing data transmission or when data
transmission is idle. When NORM congestion control operation is enabled, these probes
are sent once per RTT of the current limiting receiver (with respect to congestion control
rate). In this case the intervalMin and intervalMax parameters (in units of
seconds) control the rate at which the sender’s estimate of GRTT is updated. At session
start, the estimate is updated at intervalMin and the update interval time is doubled
until intervalMax is reached. This dynamic allows for a rapid initial estimation of

 40

GRTT and a slower, steady-state update of GRTT. When congestion control is disabled
and NORM GRTT probing is enabled (NORM_PROBE_ACTIVE or
NORM_PROBE_PASSIVE) the intervalMin and intervalMax values also
determine the rate at which NORM_CMD(CC) probes are transmitted by the sender.
Thus by setting larger values for intervalMin and intervalMax, the NORM
sender application can reduce the overhead of the GRTT measurement process.
However, this also reduces the ability of NORM to adapt to changes in GRTT.
The default NORM GRTT intervalMin and intervalMax values are 1.0 second
and 30.0 seconds, respectively.

Return Values
This function has no return values.

NormSetBackoffFactor()

Synopsis
#include <normApi.h>

void NormSetBackoffFactor(NormSessionHandle session,
 double backoffFactor);

Description
This function sets the sender's "backoff factor" for the given session.. The backoff
factor is used to scale various timeouts related to the NACK repair process. The sender
advertises its backoff factor setting to the receiver group in NORM protocol message
headers. The default backoff factor for NORM sessions is 4.0. The backoff factor is
used to determine the maximum time that receivers may delay NACK transmissions (and
other feedback messages) as part of NORM's probabilistic feedback suppression
technique. For example, the maximum NACK delay time is backoffFactor*GRTT.
Thus a large backoffFactor value introduces latency into the NORM repair process.
However, a small backoffFactor value causes feedback suppression to be less
effective and increases the risk of feedback implosion for large receiver group sizes. The
default setting of 4.0 provides reasonable feedback suppression for moderate to large
group sizes when multicast feedback is possible. The NORM specification recommends
a backoff factor value of 6.0 when unicast feedback is used. However, for demanding
applications (with respect to repair latency) when group sizes are modest, a small (even
0.0) backoffFactor value can be specified to reduce the latency of reliable data
delivery.

Return Values
This function has no return values.

 41

NormSetGroupSize()

Synopsis
#include <normApi.h>

void NormSetGroupSize(NormSessionHandle session,
 unsigned int groupSize);

Description
This function sets the sender's estimate of receiver group size for the given session. The
sender advertises its group size setting to the receiver group in NORM protocol message
headers that, in turn, use this information to shape the distribution curve of their random
timeouts for the timer-based, probabilistic feedback suppression technique used in the
NORM protocol. Note that the groupSize estimate does not have to be very accurate
and values within an order of magnitude of the actual group size tend to produce
acceptable performance. The default group size setting in NORM is 1,000 and thus can
work well for a wide range of actual receiver group sizes. The penalty of an overly large
estimate is statistically a little more latency in reliable data delivery with respect to the
round trip time and some potential for excess feedback. A substantial underestimation of
group size increases the risk of feedback implosion. Currently, the NORM
implementation does not attempt to automatically measure group size from receiver
feedback. Applications could add their own mechanism for this (perhaps keeping explicit
track of group membership), or it is possible that future versions of the NRL NORM
implementation may have some provision for automatic group size estimation by the
sender based on receiver feedback messages.

Return Values
This function has no return values.

NormFileEnqueue()

Synopsis
#include <normApi.h>

NormObjectHandle NormFileEnqueue(NormSessionHandle session,
 const char* filename,
 const char* infoPtr = NULL,
 unsigned int infoLen = 0);

Description
This function enqueues a file for transmission within the specified NORM session.
Note that NormStartSender() must have been previously called before files or any
transport objects may be enqueued and transmitted. The fileName parameter specifies
the path to the file to be transmitted. The NORM protocol engine read and writes directly
from/to file system storage for file transport, potentially providing for a very large virtual
"repair window" as needed for some applications. While relative paths with respect to
the current working directory may be used, it is recommended that full paths be used

 42

when possible. The optional infoPtr and infoLen parameters are used to associate
NORM_INFO content with the sent transport object. The maximum allowed infoLen
corresponds to the segmentSize used in the prior call to NormStartSender().
The use and interpretation of the NORM_INFO content is left to the application's
discretion. Example usage of NORM_INFO content for NORM_OBJECT_FILE might
include file name, creation date, MIME-type or other information which will enable
NORM receivers to properly handle the file when reception is complete.
The application is allowed to enqueue multiple transmit objects within in the "transmit
cache" limits (see NormSetTxCacheLimits()) and enqueued objects are transmitted
(and repaired as needed) within the limits determined by automated congestion control
(see NormSetCongestionControl()) or fixed rate (see NormSetTxRate())
parameters.

Return Values
A NormObjectHandle is returned which the application may use in other NORM API
calls as needed. This handle can be considered valid until the application explicitly
cancels the object's transmission (see NormObjectCancel()) or a
NORM_TX_OBJECT_PURGED event is received for the given object. Note the
application may use the NormObjectRetain() method if it wishes to refer to the
object after the NORM_TX_OBJECT_PURGED notification. In this case, the application,
when finished with the object, must use NormObjectRelease() to free any
resources used or else a memory leak condition will result. A value of
NORM_OBJECT_INVALID is return upon error. Possible failure conditions include the
specified session is not operating as a NormSender, insufficient memory resources
were available, or the "transmit cache" limits have been reached and all previously
enqueued NORM transmit objects are pending transmission. Also the call will fail if the
infoLen parameter exceeds the local NormSender segmentSize limit.

NormDataEnqueue()

Synopsis
#include <normApi.h>

NormObjectHandle NormDataEnqueue(NormSessionHandle session,
 const char* dataPtr,
 unsigned int dataLen,
 const char* infoPtr = NULL,
 unsigned int infoLen = 0);

Description
This function enqueues a segment of application memory space for transmission within
the specified NORM session. Note that NormStartSender() must have been
previously called before files or any transport objects may be enqueued and transmitted.
The dataPtr parameter must be a valid pointer to the area of application memory to be
transmitted and the dataLen parameter indicates the quantity of data to transmit. The
NORM protocol engine read and writes directly from/to application memory space so it

 43

is important that the application does not modify (or deallocate) the memory space during
the time the NORM protocel engine may access this area. The optional infoPtr and
infoLen parameters are used to associate NORM_INFO content with the sent transport
object. The maximum allowed infoLen corresponds to the segmentSize used in the
prior call to NormStartSender(). The use and interpretation of the NORM_INFO
content is left to the application's discretion. Example usage of NORM_INFO content
for NORM_OBJECT_DATA might include application-defined data typing or other
information which will enable NORM receiver applications to properly interpret the
received data when reception is complete. Of course, it is possible that the application
may embed such typing information in the object data content itself. This is left to the
application's discretion.
The application is allowed to enqueue multiple transmit objects within in the "transmit
cache" limits (see NormSetTxCacheLimits()) and enqueued objects are transmitted
(and repaired as needed) within the limits determined by automated congestion control
(see NormSetCongestionControl()) or fixed rate (see NormSetTxRate())
parameters.

Return Values
A NormObjectHandle is returned which the application may use in other NORM API
calls as needed. This handle can be considered valid until the application explicitly
cancels the object's transmission (see NormObjectCancel()) or a
NORM_TX_OBJECT_PURGED event is received for the given object. Note the
application may use the NormObjectRetain() method if it wishes to refer to the
object after the NORM_TX_OBJECT_PURGED notification. In this case, the application,
when finished with the object, must use NormObjectRelease() to free any
resources used or else a memory leak condition will result. A value of
NORM_OBJECT_INVALID is return upon error. Possible failure conditions include the
specified session is not operating as a NormSender, insufficient memory resources
were available, or the "transmit cache" limits have been reached and all previously
enqueued NORM transmit objects are pending transmission. Also the call will fail if the
infoLen parameter exceeds the local NormSender segmentSize limit.

NormRequeueObject()

Synopsis
#include <normApi.h>

bool NormRequeueObject(NormSessionHandle session,
 NormObjectHandle object);

Description
This function allows the application to resend (or reset transmission of) a
NORM_OBJECT_FILE or NORM_OBJECT_DATA transmit object that was previously
enqueued for the indicated session. This function is useful for applications sending to
silent (non-NACKing) receivers as it enables the receivers to take advantage of multiple
retransmissions of objects (including any auto-parity set, see

 44

NormSetAutoParity()) to more robustly receive content. The object parameter
must be a valid transmit NormObjectHandle that has not yet been "purged" from the
sender's transmit queue. Upon success, the specified object will be fully retransmitted
using the same NORM object transport identifier as was used on its initial transmission.
This call may be made at any time to restart transmission of a previously-enqueued
object, but the NORM_TX_OBJECT_SENT or NORM_TX_FLUSH_COMPLETED
notifications can serve as good cues for an appropriate time to resend an object. If
multiple objects are re-queued, they will be resent in order of their initial enqueuing.
The transmit cache bounds set by NormSetTransmitCacheBounds() determine
the number of previously-sent objects retained in the sender's transmit queue and that are
thus eligible to be requeued for retransmission. An object may be requeued via this call
multiple times, but each distinct requeue should be done after an indication such as
NORM_TX_OBJECT_SENT or NORM_TX_FLUSH_COMPLETED for the given object.
Otherwise, the object will simply be reset from its current transmission point to transmit
from the beginning (i.e. restart). Note that the object type NORM_OBJECT_STREAM
cannot currently be requeued.
(TBD – should a "numRepeats" parameter be added to this function?)

Return Values
A value of true is returned upon success and a value of false is returned upon failure.
Possible reasons for failure include an invalid object handle was provided (i.e. a non-
transmit object or transmit object that has been "purged" from the transmit queue (see
NORM_TX_OBJECT_PURGED)) or the provided object was of type
NORM_OBJECT_STREAM.

NormStreamOpen()

Synopsis
#include <normApi.h>

NormObjectHandle NormStreamOpen(NormSessionHandle session,
 unsigned int bufferSize,
 const char* infoPtr = NULL,
 unsigned int infoLen = 0);

Description
This function opens a NORM_OBJECT_STREAM sender object and enqueues it for
transmission within the indicated session. NormStream objects provide reliable, in-
order delivery of data content written to the stream by the sender application. Note that
no data is sent until subsequent calls to NormStreamWrite() are made unless
NORM_INFO content is specified for the stream with the infoPtr and infoLen
parameters. Example usage of NORM_INFO content for NORM_OBJECT_STREAM
might include application-defined data typing or other information which will enable
NORM receiver applications to properly interpret the received stream as it is being
received. The NORM protocol engine buffers data written to the stream for original
transmission and repair transmissions as needed to achieve reliable transfer. The

 45

bufferSize parameter controls the size of the stream's "repair window" which limits
how far back the sender will "rewind" to satisfy receiver repair requests.
NORM, as a NACK-oriented protocol, currently lacks a mechanism for receivers to
explicitly feedback flow control status to the sender unless the sender leverages NORM's
optional positive acknowledgement (ACK) features. Thus, the bufferSize selection
plays an important role in NORM's reliability. Generally, a larger bufferSize value
is safer with respect to reliability, but some applications may wish to limit how far the
sender rewinds to repair receivers with poor connectivity with respect to the group at
large. Such applications may set a smaller bufferSize to avoid the potential for large
latency in data delivery. This may result in breaks in the reliable delivery of stream data
to some receivers, but this form of quasi-reliability while limiting latency may be useful
for some types of applications (e.g. reliable real-time messaging, video or sensor data
transport). Note that NORM receivers can "resync" to the sender after such breaks if the
application leverages the message boundary recovery features of NORM (see
NormStreamMarkEom()).
Note that the current implementation of NORM is designed to support only one active
stream per session, and that any NORM_OBJECT_DATA or NORM_OBJECT_FILE
objects enqueued for transmission will not begin transmission until an active stream is
closed. Applications requiring multiple streams or concurrent file/data transfer should
instantiate multiple NormSessions as needed.
Note there is no corresponding "open" call for receiver streams. Receiver
NORM_OBJECT_STREAMs are automatically opened by the NORM protocol engine and
the receiver applications is notified of new streams via the NORM_RX_OBJECT_NEW
notification (see NormGetNextEvent()).

Return Values
A NormObjectHandle is returned which the application may use in other NORM API
calls as needed. This handle can be considered valid until the application explicitly
cancels the object's transmission (see NormObjectCancel()) or a
NORM_TX_OBJECT_PURGED event is received for the given object. Note the
application may use the NormObjectRetain() method if it wishes to refer to the
object after the NORM_TX_OBJECT_PURGED notification. In this case, the application,
when finished with the object, must use NormObjectRelease() to free any
resources used or else a memory leak condition will result. A value of
NORM_OBJECT_INVALID is return upon error. Possible failure conditions include the
specified session is not operating as a NormSender, insufficient memory resources
were available, or the "transmit cache" limits have been reached and all previously
enqueued NORM transmit objects are pending transmission. Also the call will fail if the
infoLen parameter exceeds the local NormSender segmentSize limit.

 46

NormStreamClose()

Synopsis
#include <normApi.h>

void NormStreamClose(NormObjectHandle streamHandle,
 bool graceful = false);

Description
This function halts transfer of the stream specified by the streamHandle parameter
and releases any resources used unless the associated object has been explicitly retained
by a call to NormObjectRetain(). No further calls to NormStreamWrite() will
be successful for the given streamHandle. The optional graceful parameter, when
set to a value of true, may be used by NORM senders to initiate "graceful" shutdown of
a transmit stream. In this case, the sender application will be notified that stream has
(most likely) completed reliable transfer via the NORM_TX_OBJECT_PURGED
notification upon completion of the graceful shutdown process. When the graceful
option is set, receivers are notified of the stream end via a "FLAG_STREAM_END" flag
in NORM_DATA message (Note the NRL NORM implementation uses a portion of the
NORM_DATA::payload_reserved field for this purpose and proposes that this type
of funtionality be added to subsequent versions of the NORM protocol specification) and
will receive a NORM_RX_OBJECT_COMPLETED notification after all received stream
content has been read. Otherwise, the stream is immediately terminated, regardless of
receiver state. In this case, this function is equivalent to the NormObjectCancel()
routine and may be used for sender or receiver streams. So, it is expected this function
(NormStreamClose()) will typically be used for transmit streams by NORM senders.

Return Values
This function has no return values.

NormStreamWrite()

Synopsis
#include <normApi.h>

unsigned int NormStreamWrite(NormObjectHandle streamHandle
 const char* buffer,
 unsigned int numBytes);

Description
This function enqueues data for transmission within the NORM stream specified by the
streamHandle parameter. The buffer parameter must be a pointer to the data to be
enqueued and the numBytes parameter indicates the length of the data content. Note
this call does not block and will return immediately. The return value indicates the
number of bytes copied from the provided buffer to the internal stream transmission
buffers. Calls to this function will be successful unless the stream's transmit buffer space

 47

is fully occupied with data pending original or repair transmission if the stream's "push
mode" is set to false (default, see NormStreamSetPushMode() for details). If the
stream's "push mode" is set to true, a call to NormStreamWrite() will always result
in copying of application data to the stream at the cost of previously enqueued data
pending transmission (original or repair) being dropped by the NORM protocol engine.
While NORM NACK-based reliability does not provide explicit flow control, there is
some degree of implicit flow control in limiting writing new data to the stream against
pending repairs. Other flow control strategies are possible using the
NormSetWatermark() function.
The NormEvents NORM_TX_QUEUE_EMPTY and NORM_TX_QUEUE_VACANCY are
posted with the NormEvent::object field set to a valid sender stream
NormObjectHandle to indicate when the stream is ready for writing via this function.
Note that the NORM_TX_QUEUE_VACANCY event type is posted only after the stream's
transmit buffer has been completely filled. Thus, the application must make a call to
NormStreamWrite() that copies less than the requested numBytes value (return
value less than numBytes) before additional NORM_TX_QUEUE_VACANCY events are
posted for the given streamHandle (i.e., the event type is not re-posted until the
application has again filled the available stream transmit buffer space). By cueing off of
NORM_TX_QUEUE_EMPTY, the application can write its "freshest" available data to the
stream, but by cueing off of NORM_TX_QUEUE_VACANCY, an application can keep the
NORM protocol engine busiest, to achieve the maximum possible throughput at high data
rates.

Return Values
This function returns the number of bytes of data successfully enqueued for NORM
stream transmission. If the underlying send stream buffer is full, this function may return
zero or a value less than the requested numBytes.

NormStreamFlush()

Synopsis
#include <normApi.h>

void NormStreamFlush(NormObjectHandle streamHandle,
 bool eom = false,
 NormFlushMode flushMode = NORM_FLUSH_PASSIVE);

Description
This function causes an immediate "flush" of the transmit stream specified by the
streamHandle parameter. Normally, unless NormSetAutoFlush() has been
invoked, the NORM protocol engine buffers data written to a stream until it has
accumulated a sufficient quantity to generate a NORM_DATA message with a full
payload (as designated by the segmentSize parameter of the NormStartSender()
call). This results in most efficient operation with respect to protocol overhead.
However, for some NORM streams, the application may not wish wait for such
accumulation when critical data has been written to a stream. The default stream "flush"

 48

operation invoked via NormStreamFlush() for flushMode equal to
NORM_FLUSH_PASSIVE causes NORM to immediately transmit all enqueued data for
the stream (subject to session transmit rate limits), even if this results in NORM_DATA
messages with "small" payloads. If the optional flushMode parameter is set to
NORM_FLUSH_ACTIVE, the application can achieve reliable delivery of stream content
up to the current write position in an even more proactive fashion. In this case, the
sender additionally, actively transmits NORM_CMD(FLUSH) messages after any
enqueued stream content has been sent. This immediately prompt receivers for repair
requests which reduces latency of reliable delivery, but at a cost of some additional
messaging. Note any such "active" flush activity will be terminated upon the next
subsequent write to the stream. If flushMode is set to NORM_FLUSH_NONE, this call
has no effect other than the optional end-of-message marking described here.
The optional eom parameter, when set to true, allows the sender application to mark an
end-of-message indication (see NormStreamMarkEom()) for the stream and initiate
flushing in a single function call. The end-of-message indication causes NORM to mark
the first NORM_DATA message generated following a subsequent write to the stream
with the NORM_FLAGS_MSG_START flag. This mechanism provide a means for
message boundary recovery when receivers join or re-sync to a sender mid-stream.
Note that frequent flushing, particularly for NORM_FLUSH_ACTIVE operation, may
result in more NORM protocol activity than usual, so care must be taken in application
design and deployment when scalability to large group sizes is expected.

Return Values
This function has no return values.

NormStreamSetAutoFlush()

Synopsis
#include <normApi.h>

void NormStreamSetAutoFlush(NormObjectHandle streamHandle
 NormFlushMode flushMode);

Description
This function sets "automated flushing" for the NORM transmit stream indicated by the
streamHandle parameter. By default, a NORM transmit stream is "flushed" only
when explicitly requested by the application (see NormStreamFlush()). However, to
simplify programming, the NORM API allows that automated flushing be enabled such
that the "flush" operation occurs every time the full requested buffer provided to a
NormStreamWrite() call is successfully enqueued. This may be appropriate for
messaging applications where the provided buffers corresponds to an application
messages requiring immediate, full transmission. This may make the NORM protocol
perhaps more "chatty" than its typical "bulk transfer" form of operation, but can provide a
useful capability for some applications.

 49

Possible values for the flushMode parameter include NORM_FLUSH_NONE,
NORM_FLUSH_PASSIVE, and NORM_FLUSH_ACTIVE. The default setting for a
NORM stream is NORM_FLUSH_NONE where no flushing occurs unless explicitly
requested via NormStreamFlush(). By setting the automated flushMode to
NORM_FLUSH_PASSIVE, the only action taken is to immediately transmit any data that
has been written to the stream, even if "runt" NORM_DATA messages (with payloads
less than the NormSender segmentSize parameter) are generated as a result. If
NORM_FLUSH_ACTIVE is specified, the automated flushing operation is further
augmented with the additional transmission of NORM_CMD(FLUSH) messages to
proactively excite the receiver group for repair requests.

Return Values
This function has no return values.

NormStreamSetPushEnable()

Synopsis
#include <normApi.h>

void NormStreamSetPushEnable(NormObjectHandle streamHandle
 bool pushEnable);

Description
This function controls how the NORM API behaves when the application attempts to
enqueue new stream data for transmission when the associated stream's transmit buffer is
fully occupied with data pending original or repair transmission. By default
(pushEnable == false), a call to NormStreamWrite() will return a zero value
under this condition, indicating it was unable to enqueue the new data. However, if
pushEnable is set to true for a given streamHandle, the NORM protocol engine
will discard the oldest buffered stream data (even if it is pending repair transmission or
has never been transmitted) as needed to enqueue the new data. Thus a call to
NormStreamWrite() will never fail to copy data. This behavior may be desirable for
applications where it is more important to quickly delivery new data than to reliably
deliver older data written to a stream. The default behavior for a newly opened stream
corresponds to pushEnable equals false. This limits the rate to which an
application can write new data to the stream to the current transmission rate and status of
the reliable repair process.

Return Values
This function has no return values.

 50

NormStreamHasVacancy()

Synopsis
#include <normApi.h>

bool NormStreamHasVacancy(NormObjectHandle streamHandle);

Description
This function can be used to query whether the transmit stream, specified by the
streamHandle parameter, has buffer space available so that the application may
successfully make a call to NormStreamWrite(). Normally, a call to
NormStreamWrite() itself can be used to make this determination, but this function
can be useful when "push mode" has been enabled (see the description of the
NormStreamSetPushEnable() function) and the application wants to avoid
overwriting data previously written to the stream that has not yet been transmitted. Note
that when "push mode" is enabled, a call to NormStreamWrite() will always
succeed, overwriting previously-enqueued data if necessary. Normally, this function will
return true after a NORM_TX_QUEUE_VACANCY notification has been received for a
given NORM stream object.

Return Values
This function returns a value of true when there is transmit buffer space to which the
application may write and false otherwise.

NormStreamMarkEom()

Synopsis
#include <normApi.h>

void NormStreamMarkEom(NormObjectHandle streamHandle);

Description
This function allows the application to indicate to the NORM protocol engine that the last
data successfully written to the stream indicated by streamHandle corresponded to
the end of an application-defined message boundary. If the stream is either explicitly
flushed at this point (see NormStreamFlush()) or the last write had exactly filled a
NormSender segmentSize NORM_DATA message payload, the beginning of the next
write will correspond to the beginning of a new NORM_DATA message. The end-of-
message indication given here will cause the NORM protocol engine to flag this new
message with NORM_FLAG_MSG_START which allows receivers to recover message
boundary synchronization even when beginning reception mid-stream. Note that the
marking is most effective when explicit flushing is used which forces alignment of
application message boundaries with NORM_DATA messages. It is anticipated that
future versions of the NORM protocol specification (and/or the NRL implementation)
will provide additional, more flexible stream control mechanisms (e.g. mid-segment
message boundary alignment) that allow for more robust message boundary recovery.

 51

It is recommended that the NormStreamMarkEom() should be used with automated
flushing modes (see NormStreamSetAutoFlush()) while the optional eom
parameter of NormStreamFlush() is instead used when explicit flushing is practiced.
End-of-message marking may be used when no flushing is done, but note then there is no
guarantee of message boundary to NORM_DATA message alignment unless the
application message sizes correspond to multiples of the configured NormSender
segmentSize. Again, note future versions of NORM and this implementation may
provide more flexibility here.

Return Values
This function has no return values.

NormSetWatermark()

Synopsis
#include <normApi.h>

bool NormSetWatermark(NormSessionHandle session,
 NormObjectHandle object);

Description
This function specifies a "watermark" transmission point at which NORM sender
protocol operation should perform a flushing process and/or positive acknowledgment
collection for a given session. For NORM_OBJECT_FILE and
NORM_OBJECT_DATA transmissions, the positive acknowledgement collection will
begin when the specified object has been completely transmitted. The object
parameter must be a valid handle to a previously-created sender object (see
NormEnqueueFile(), NormEnqueueData(), or NormStreamOpen()). For
NORM_OBJECT_STREAM transmission, the positive acknowledgment collection begins
immediately, using the current position (offset of most recent data written) of the sender
stream as a reference.
The functions NormAddAckingNode() and NormRemoveAckingNode() are used
to manage the list of NormNodeId values corresponding to NORM receivers that are
expected to explicitly acknowledge the watermark flushing messages transmitted by the
sender. Note that the NormNodeId NORM_NODE_NONE may be included in the list.
Inclusion of NORM_NODE_NONE forces the watermark flushing process to proceed
through a full NORM_ROBUST_FACTOR number of rounds before completing,
prompting any receivers that have not completed reliable reception to the given
watermark point to NACK for any repair needs. If NACKs occur, the flushing process is
reset and repeated until completing with no NACKs for data through the given watermark
transmission point are received. Thus, even without explicit positive acknowledgment,
the sender can use this process (by adding NORM_NODE_NONE to the session's list of
acking nodes) for a high level of assurance that the receiver set is "happy" (completed
reliable data reception) through the given object (or stream transmission point).

 52

The event NORM_TX_WATERMARK_COMPLETED is posted for the given session
when the flushing process or positive acknowledgment collection has completed. The
process completes as soon as all listed receivers have responded unless
NORM_NODE_NONE is included in the acking list. The sender application may use the
function NormGetAckingStatus() to determine the degree of success of the
flushing process in general or for individual NormNodeId values.
The flushing is conducted concurrently with ongoing data transmission and does not
impede the progress of reliable data transfer. Thus the sender may still enqueue
NormObjects for transmission (or write to the existing stream) and the positive
acknowledgement collection and flushing procedure will be multiplexed with the ongoing
data transmission. However, the sender application may wish to defer from or limit itself
in sending more data until a NORM_TX_WATERMARK_COMPLETED event is received for
the given session. This provides a form of sender->receiver(s) flow control which
does not exist in NORM's default protocol operation. If a subsequent call is made to
NormSetWatermark() before the current acknowledgement request has completed,
the pending acknowledgment request is canceled and the new one begins.

Return Values
The function returns true upon successful establishment of the watermark point. The
function may return false upon failure (why would it fail? – TBD).

NormAddAckingNode()

Synopsis
#include <normApi.h>

bool NormAddAckingNode(NormSessionHandle session,
 NormNodeId nodeId);

Description
When this function is called, the specified nodeId is added to the list of NormNodes
used when NORM sender operation performs positive acknowledgement (ACK)
collection for the specified session. The optional NORM positive acknowledgement
collection occurs when a specified transmission point (see NormSetWatermark()) is
reached or for specialized protocol actions such as positively-acknowledged application-
defined commands. Additionally a value of nodeId equal to NORM_NODE_NONE may
be set to force the watermark flushing process through a full NORM_ROBUST_FACTOR
number of rounds regardless of actual acking nodes. Otherwise the flushing process is
terminated when all of the nodes in the acking node list have responded.

Return Values
The function returns true upon success and false upon failure. The only failure
condition is that insufficient memory resources were available. If a specific nodeId is
added more than once, this has no effect.

 53

NormRemoveAckingNode()

Synopsis
#include <normApi.h>

void NormRemoveAckingNode(NormSessionHandle session,
 NormNodeId nodeId);

Description
This function deletes the specified nodeId from the list of NormNodes used when
NORM sender operation performs positive acknowledgement (ACK) collection for the
specified session. Note that if the nodeId NORM_NODE_NONE has been added to
the list, it too must be removed to change the watermark flushing behavior if desired.

Return Values
The function has no return values.

NormGetAckingStatus()

Synopsis
#include <normApi.h>

NormAckingStatus NormGetAckingStatus(NormSessionHandle session,
 NormNodeId nodeId =
 NORM_NODE_ANY);

Description
This function queries the status of the watermark flushing process and/or positive
acknowledgment collection initiated by a prior call to NormSetWatermark() for the
given session. In general, it is expected that applications will invoke this function
after the corresponding NORM_TX_WATERMARK_COMPLETED event has been posted.
Setting the default parameter value nodeId = NORM_NODE_ANY returns a "status"
indication for the overall process. Also, individual nodeId values may be queried using
the NormNodeId values of receivers that were included in previous calls to
NormAddAckingNode() to populate the sender session's acking node list.
If the flushing/acknowledgment process is being used for application flow control, the
sender application may wish to reset the watermark and flushing process (using
NormSetWatermark()) if the response indicates that some nodes have failed to
respond. However, note that the flushing/acknowledgment process itself does elicit
NACKs from receivers as needed and is interrupted and reset by any repair response that
occurs. Thus, even by the time the flushing process has completed (and
NORM_TX_WATERMARK_COMPLETED is posted) once, this is an indication that the
NORM protocol has made a valiant attempt to deliver the content. Resetting the
watermark process can increase robustness, but it may be in vain to repeat this process
multiple times when likely network connectivity has been lost or expected receivers have
failed (dropped out, shut down, etc).

 54

Return Values
Possible return values include:

NORM_ACK_INVALID The given session is invalid or the given nodeId is
not in the session's acking list.

NORM_ACK_FAILURE The positive acknowledgement collection process did
not receive acknowledgment from every listed receiver
(nodeId = NORM_NODE_ANY) or the identified
nodeId did not respond.

NORM_ACK_PENDING The flushing process at large has not yet completed
(nodeId = NORM_NODE_ANY) or the given
individual nodeId is still being queried for response.

NORM_ACK_SUCCESS All receivers (nodeId = NORM_NODE_ANY)
responded with positive acknowledgement or the given
specific nodeId did acknowledge.

NORM Receiver Functions

NormStartReceiver()

Synopsis
#include <normApi.h>

bool NormStartReceiver(NormSessionHandle session,
 unsigned long bufferSpace);

Description
This function initiates the application's participation as a receiver within the NormSession
identified by the session parameter. The NORM protocol engine will begin providing
the application with receiver-related NormEvent notifications, and, unless
NormSetSilentReceiver(true) is invoked, respond to senders with appropriate
protocol messages. The bufferSpace parameter is used to set a limit on the amount
of bufferSpace allocated by the receiver per active NormSender within the session.
The appropriate bufferSpace to use is a function of expected network
delay*bandwidth product and packet loss characteristics. A discussion of trade-offs
associated with NORM transmit and receiver buffer space selection is provided later in
this document. An insufficient bufferSpace allocation will result in potentially
inefficient protocol operation, even though reliable operation may be maintained. In
some cases of a large delay*bandwidth product and/or severe packet loss, a small
bufferSpace allocation (coupled with the lack of explicit flow control in NORM)
may result in the receiver "re-syncing" to the sender, resulting in "outages" in the reliable
transmissions from a sender (this is analogous to a TCP connection timeout failure).

 55

Return Values
A value of true is returned upon success and false upon failure. The reasons failure
may occur include limited system resources or that the network sockets required for
session communication failed to open or properly configure.

NormStopReceiver()

Synopsis
#include <normApi.h>

void NormStopReceiver(NormSessionHandle session,
 unsigned int gracePeriod = 0);

Description
This function ends the application's participation as a receiver in the NormSession
specified by the session parameter. By default, all receiver-related protocol activity is
immediately halted and all receiver-related resources are freed (except for those which
have been specifically retained (see NormObjectRetain()). However, and optional
gracePeriod parameter is provided to allow the receiver an opportunity to inform the
group of its intention. This is applicable when the local receiving NormNode has been
designated as an active congestion control representative (i.e. current limiting receiver
(CLR) or potential limiting receiver (PLR)). In this case, a non-zero gracePeriod
value provides an opportunity for the receiver to respond to the applicable sender(s) so
the sender will not expect further congestion control feedback from this receiver. The
gracePeriod integer value is used as a multiplier with the largest sender GRTT to
determine the actual time period for which the receiver will linger in the group to provide
such feedback (i.e. "grace time" = (gracePeriod * GRTT)). During this time, the
receiver will not generate any requests for repair or other protocol actions aside from
response to applicable congestion control probes. When the receiver is removed from the
current list of receivers in the sender congestion control probe messages (or the
gracePeriod expires, whichever comes first), the NORM protocol engine will post a
NORM_LOCAL_RECEIVER_CLOSED event for the applicable session, and related
resources are then freed.

Return Values
This function has no return values.

 56

NormSetRxSocketBuffer()

Synopsis
#include <normApi.h>

bool NormSetRxSocketBuffer(NormSessionHandle session,
 unsigned int bufferSize);

Description
This function allows the application to set an alternative, non-default buffer size for the
UDP socket used by the specified NORM session for packet reception. This may be
necessary for high speed NORM sessions where the UDP receive socket buffer becomes
a bottleneck when the NORM protocol engine (which is running as a user-space process)
doesn't get to service the receive socket quickly enough resulting in packet loss when the
socket buffer overflows. The bufferSize parameter specifies the socket buffer size in
bytes. Different operating systems and sometimes system configurations allow different
ranges of socket buffer sizes to be set. Note that a call to NormStartReceiver() (or
NormStartSender()) must have been previously made for this call to succeed (i.e.,
the socket must be already open).

Return Values
This function returns true upon success and false upon failure. Possible reasons for
failure include, 1) the specified session is not valid, 2) that NORM "receiver" (or
"sender") operation has not yet been started for the given session, or 3) an invalid
bufferSize specification was given.

NormSetSilentReceiver()

Synopsis
#include <normApi.h>

void NormSetSilentReceiver(NormSessionHandle session,
 bool silent,
 bool lowDelay = false);

Description
This function provides the option to configure a NORM receiver application as a "silent
receiver". This mode of receiver operation dictates that the host does not generate any
protocol messages while operating as a receiver within the specified session. Setting
the silent parameter to true enables silent receiver operation while setting it to
false results in normal protocol operation where feedback is provided as needed for
reliability and protocol operation. Silent receivers are dependent upon proactive FEC
transmission (see NormSetAutoParity()) or using repair information requested by
other non-silent receivers within the group to achieve reliable transfers.
The optional lowDelay parameter is applicable only for reception of the
NORM_OBJECT_STREAM type. When lowDelay is set to a value of true, the

 57

NORM receiver is allowed to read received data from the stream for a given FEC code
block as soon as any content for a subsequent FEC code block is received, regardless of
the sender stream buffer size setting (see NormStreamOpen()) or the receiver's
receive buffer size (see NormStartReceiver()). This eliminates data delivery delay
due to receiver buffering beyond one FEC code block, but may result in compromise of
potential stream reliability where the sender may provide additional repair transmissions
in response to NACKs from other, non-silent receiver participating in the session.
The default behavior (lowDelay = false), causes the receiver to buffer received FEC
code blocks for as long as possible (within buffer constraints as newer data arrives)
before allowing the application to read the data. This provides maximum reliability, but
buffer delays of potentially multiple FEC code blocks may be incurred when packet loss
occurs.

Return Values
This function has no return values.

NormSetDefaultUnicastNack()

Synopsis
#include <normApi.h>

void NormSetDefaultUnicastNack(NormSessionHandle session,
 bool state);

Description
This function controls the default behavior determining the destination of receiver
feedback messages generated while participating in the session. If state is true,
"unicast NACKing" is enabled for new remote senders while it is disabled for state
equal to false. The NACKing behavior for current remote senders is not affected. When
"unicast NACKing" is disabled (default), NACK messages are sent to the session address
(usually a multicast address) and port, but "unicast NACKing", when enabled, causes
receiver feedback messages to be sent to the unicast address (and port) based on the
source address of sender messages received. For unicast NORM sessions, it is
recommended that "unicast NACKing" be enabled. Note that receiver feedback
messages subject to the state of "unicast NACKing" include NACK-messages as well as
some ACK messages such as congestion control feedback. Explicitly solicited ACK
messages, such as those used to satisfy sender watermark acknowledgement requests (see
NormSetWatermark()) are always unicast to the applicable sender. (TBD – provide
API option so that all messages are multicast.) The default session-wide behavior for
unicast NACKing can be overridden via the NormNodeSetUnicastNack() function
for individual remote senders.

Return Values
This function has no return values.

 58

NormNodeSetUnicastNack()

Synopsis
#include <normApi.h>

void NormNodeSetUnicastNack(NormNodeHandle senderNode,
 bool state);

Description
This function controls the the destination address of receiver feedback messages
generated in response to a specific remote NORM sender.. If state is true, "unicast
NACKing" is enabled while it is disabled for state equal to false. See the description
of NormSetDefaultUnicastNack() for details on 'unicast NACKing" behavior.

Return Values
This function has no return values.

NormSetDefaultNackingMode()

Synopsis
#include <normApi.h>

void NormSetDefaultNackingMode(NormSessionHandle session,
 NormNackingMode nackingMode);

Description
This function sets the default "nacking mode" used when receiving objects. This allows
the receiver application some control of its degree of participation in the repair process.
By limiting receivers to only request repair of objects in which they are really interested
in receiving, some overall savings in unnecessary network loading might be realized.
Available nacking modes include:

NORM_NACK_NONE Do not transmit any repair requests for the newly
received object.

NORM_NACK_INFO_ONLY Transmit repair requests for NORM_INFO content
only as needed.

NORM_NACK_NORMAL Transmit repair requests for entire object as
needed.

This function specifies the default behavior with respect to any new sender or object.
This default behavior may be overridden for specific sender nodes or specific object
using NormNodeSetNackingMode() or NormObjectSetNackingMode(),
respectively. The receiver application's use of NORM_NACK_NONE essentially disables a
guarantee of reliable reception, although the receiver may still take advantage of sender
repair transmissions in response to other receivers' requests. When the sender provides,
NORM_INFO content for transmitted objects, the NORM_NACK_INFO_ONLY mode

 59

may allows the receiver to reliably receive object context information from which it may
choose to "upgrade" its nacking mode for the specific object via the
NormObjectSetNackingMode() call. Similarly, the receiver may changes its
default nacking mode with respect to specific senders via the
NormNodeSetNackingMode() call. The default "default nacking mode" when this
call is not made is NORM_NACK_NORMAL.

Return Values
This function has no return values.

NormNodeSetNackingMode()

Synopsis
#include <normApi.h>

void NormNodeSetNackingMode(NormNodeHandle nodeHandle,
 NormNackingMode nackingMode);

Description
This function sets the default "nacking mode" used for receiving new objects from a
specific sender as identified by the nodeHandle parameter. This overrides the default
nacking mode set for the receive session. See NormSetDefaultNackingMode()
for a description of possible nackingMode parameter values and other related
information.

Return Values
This function has no return values.

NormObjectSetNackingMode()

Synopsis
#include <normApi.h>

void NormObjectSetNackingMode(NormObjectHandle objectHandle,
 NormNackingMode nackingMode);

Description
This function sets the "nacking mode" used for receiving a specific transport object as
identified by the objectHandle parameter. This overrides the default nacking mode
set for the applicable sender node. See NormSetDefaultNackingMode() for a
description of possible nackingMode parameter values and other related information.

Return Values
This function has no return values.

 60

NormSetDefaultRepairBoundary()

Synopsis
#include <normApi.h>

void NormSetDefaultRepairBoundary(NormSessionHandle sessionHandle,
 NormRepairBoundary repairBoundary);

Description
This function allows the receiver application to customize, for a given
sessionHandle, at what points the receiver initiates the NORM NACK repair process
during protocol operation. Normally, the NORM receiver initiates NACking for repairs
at the FEC code block and transport object boundaries. For smaller block sizes, the
NACK repair process is often/quickly initiated and the repair of an object will occur, as
needed, during the transmission of the object. This default operation corresponds to
repairBoundary equal to NORM_BOUNDARY_BLOCK. Using this function, the
application may alternatively, setting repairBoundary equal to
NORM_BOUNDARY_OBJECT, cause the protocol to defer NACK process initiation until
the current transport object has been completely transmitted. This mode of operation
may be useful when it is desirable to allow receivers with high quality network
connectivity (perhaps requiring only a little (or even no) "auto parity" (see
NormSetAutoParity()) to achieve reliable transfer) receive object transmission
before any extensive repair process that may be required to satisfy other receivers with
poor network connectivity. The repair boundary can also be set for individual remote
senders using the NormNodeSetRepairBoundary() function.

Return Values
This function has no return values.

NormNodeSetRepairBoundary()

Synopsis
#include <normApi.h>

void NormNodeSetRepairBoundary(NormNodeHandle nodeHandle,
 NormRepairBoundary repairBoundary);

Description
This function allows the receiver application to customize, for the specific remote sender
referenced by the nodeHandle parameter, at what points the receiver initiates the
NORM NACK repair process during protocol operation. See the description of
NormSetDefaultRepairBoundary() for further details on the impact of setting
the NORM receiver repair boundary and possible values for the repairBoundary
parameter.

 61

Return Values
This function has no return values.

NormStreamRead()

Synopsis
#include <normApi.h>

bool NormStreamRead(NormObjectHandle streamHandle,
 char* buffer
 unsigned int* numBytes);

Description
This function can be used by the receiver application to read any available data from an
incoming NORM stream. NORM receiver applications "learn" of available NORM
streams via NORM_RX_OBJECT_NEW notification events. The streamHandle
parameter here must correspond to a valid NormObjectHandle value provided during
such a prior NORM_RX_OBJECT_NEW notification. The buffer parameter must be a
pointer to an array where the received data can be stored of a length as referenced by the
numBytes pointer. On successful completion, the numBytes storage will be modified
to indicate the actual number of bytes copied into the provided buffer. If the
numBytes storage is modified to a zero value, this indicates that no stream data was
currently available for reading.
Note that NormStreamRead() is never a blocking call and only returns failure
(false) when a break in the integrity of the received stream occurs. The
NORM_RX_OBJECT_UPDATE provides an indication to when there is stream data
available for reading. When such notification occurs, the application should repeatedly
read from the stream until the numBytes storage is set to zero, even if a false value is
returned. Additional NORM_RX_OBJECT_UPDATE notifications might not be posted
until the application can has read all available data.

Return Values
This function normally returns a value of true. However, if a break in the integrity of
the reliable received stream occurs (or the stream has been ended by the sender), a value
of false is returned to indicate the break. Unless the stream has been ended (and the
receiver application will receive NORM_RX_OBJECT_COMPLETED notification for the
stream in that case), the application may continue to read from the stream as the NORM
protocol will automatically "resync" to streams, even if network conditions are
sufficiently poor that breaks in reliability occur. If such a "break" and "resync" occurs,
the application may be able to leverage other NORM API calls such as
NormStreamSeekMsgStart() or NormStreamGetOffset() if needed to
recover its alignment with received stream content. This depends upon the nature of the
application and its stream content.

 62

NormStreamSeekMsgStart()

Synopsis
#include <normApi.h>

bool NormStreamSeekMsgStart(NormObjectHandle streamHandle);

Description
This function advances the read offset of the receive stream referenced by the
streamHandle parameter to align with the next available message boundary. Message
boundaries are defined by the sender application using the NormStreamMarkEom()
call. Note that any received data prior to the next message boundary is discarded by the
NORM protocol engine and is not available to the application (i.e., there is currently no
"rewind" function for a NORM stream). Also note this call cannot be used to skip
messages. Once a valid message boundary is found, the application must read from the
stream using NormStreamRead() to further advance the read offset. The current
offset (in bytes) for the stream can be retrieved via NormStreamGetReadOffset().

Return Values
This function returns a value of true when start-of-message is found. The next call to
NormStreamRead() will retrieve data aligned with the message start. If no new
message boundary is found in the buffered receive data for the stream, the function
returns a value of false. In this case, the application should defer repeating a call to
this function until a subsequent NORM_RX_OBJECT_UPDATE notification is posted.

NormStreamGetReadOffset()

Synopsis
#include <normApi.h>

unsigned long NormStreamGetReadOffset(NormObjectHandle streamHandle);

Description
This function retrieves the current read offset value for the receive stream indicated by
the streamHandle parameter. Note that for very long-lived streams, this value may
wrap. Thus, in general, applications should not be highly dependent upon the stream
offset, but this feature may be valuable for certain applications which associate some
application context with stream position.

Return Values
This function returns the current read offset in bytes. The return value is undefined for
sender streams. There is no error result.

 63

NORM Object Functions
The functions described in this section may be used for sender or receiver purposes to
manage transmission and reception of NORM transport objects. In most cases, the
receiver will be the typical user of these functions to retrieve additional information on
newly-received objects. All of these functions require a valid NormObjectHandle
argument which specifies the applicable object. Note that NormObjectHandle values
obtained from a NormEvent notification may be considered valid only until a
subsequent call to NormGetNextEvent(), unless explicitly retained by the
application (see NormObjectRetain()). NormObjectHandle values obtained as
a result of NormFileEnqueue(), NormDataEnqueue(), or
NormOpenStream() calls can be considered valid only until a corresponding
NORM_TX_OBJECT_PURGED notification is posted or the object is dequeued using
NormCancelObject(), unless, again, otherwise explicitly retained (see
NormObjectRetain()).

NormObjectGetType()

Synopsis
#include <normApi.h>

NormObjectType NormObjectGetType(NormObjectHandle objectHandle);

Description
This function can be used to determine the object type (NORM_OBJECT_DATA,
NORM_OBJECT_FILE, or NORM_OBJECT_STREAM) for the NORM transport object
identified by the objectHandle parameter. The objectHandle must refer to a
current, valid transport object.

Return Values
This function returns the NORM object type. Valid NORM object types include
NORM_OBJECT_DATA, NORM_OBJECT_FILE, or NORM_OBJECT_STREAM. A type
value of NORM_OBJECT_NONE will be returned for an objectHandle value of
NORM_OBJECT_INVALID.

NormObjectHasInfo()

Synopsis
#include <normApi.h>

bool NormObjectHasInfo(NormObjectHandle objectHandle);

Description
This function can be used to determine if the sender has associated any NORM_INFO
content with the transport object specified by the objectHandle parameter. This can

 64

even be used before the NORM_INFO content is delivered to the receiver and a
NORM_RX_OBJECT_INFO notification is posted.

Return Values
A value of true is returned if NORM_INFO is (or will be) available for the specified
transport object. A value of false is returned otherwise.

NormObjectGetInfoLength()

Synopsis
#include <normApi.h>

unsigned short NormObjectGetInfoLength(NormObjectHandle objectHandle);

Description
This function can be used to determine the length of currently available NORM_INFO
content (if any) associated with the transport object referenced by the objectHandle
parameter.

Return Values
The length of the NORM_INFO content, in bytes, of currently available for the specified
transport object is returned. A value of 0 is returned if no NORM_INFO content is
currently available or associated with the object.

NormObjectGetInfo()

Synopsis
#include <normApi.h>

unsigned short NormObjectGetInfo(NormObjectHandle objectHandle,
 char* buffer,
 unsigned short bufferLen);

Description
This function copies any NORM_INFO content associated (by the sender application)
with the transport object specified by objectHandle into the provided memory space
referenced by the buffer parameter. The bufferLen parameter indicates the length
of the buffer space in bytes. If the provided bufferLen is less than the actual
NORM_INFO length, a partial copy will occur. The actual length of NORM_INFO
content available for the specified object is returned. However, note that until a
NORM_RX_OBJECT_INFO notification is posted to the receive application, no
NORM_INFO content is available and a zero result will be returned, even if
NORM_INFO content may be subsequently available. The NormObjectHasInfo()
call can be used to determine if any NORM_INFO content will ever be available for a
specified transport object (i.e., determine if the sender has associated any NORM_INFO
with the object in question).

 65

Return Values
The actual length of currently available NORM_INFO content for the specified transport
object is returned. This function can be used to determine the length of NORM_INFO
content for the object even if a NULL buffer value and zero bufferLen is provided.
A zero value is returned if NORM_INFO content has not yet been received (or is non-
existent) for the specified object.

NormObjectGetSize()

Synopsis
#include <normApi.h>

NormSize NormObjectGetSize(NormObjectHandle objectHandle);

Description
This function can be used to determine the size (in bytes) of the transport object specified
by the objectHandle parameter. NORM can support large object sizes for the
NORM_OBJECT_FILE type, so typically the NORM library is built with any necessary,
related macros defined such that operating system large file support is enabled (e.g.,
"#define _FILE_OFFSET_BITS 64" or equivalent). The NormSize type is
defined accordingly, so the application should be built with the same large file support
configuration.
For objects of type NORM_OBJECT_STREAM, the size returned here corresponds to the
stream buffer size set by the sender application when opening the referenced stream
object.

Return Values
A size of the data content of the specified object, in bytes, is returned. Note that it may
be possible that some objects have zero data content, but do have NORM_INFO content
available.

NormObjectGetBytesPending()

Synopsis
#include <normApi.h>

NormSize NormObjectGetBytesPending(NormObjectHandle objectHandle);

Description
This function can be used to determine the progress of reception of the NORM transport
object identified by the objectHandle parameter. This function indicates the number
of bytes that are pending reception (I.e., when the object is completely received, "bytes
pending" will equal ZERO). This function is not necessarily applicable to objects of type
NORM_OBJECT_STREAM which do not have a finite size. Note it is possible that this
function might also be useful to query the "transmit pending" status of sender objects, but

 66

it does not account for pending FEC repair transmissions and thus may not produce
useful results for this purpose.

Return Values
A number of object source data bytes pending reception (or transmission) is returned.

NormObjectCancel()

Synopsis
#include <normApi.h>

void NormObjectCancel(NormObjectHandle objectHandle);

Description
This function immediately cancels the transmission of a local sender transport object or
the reception of a specified object from a remote sender as specified by the
objectHandle parameter. The objectHandle must refer to a currently valid
NORM transport object. Any resources used by the transport object in question are
immediately freed unless the object has been otherwise retained by the application via the
NormObjectRetain() call. Unless the application has retained the object in such
fashion, the object in question should be considered invalid and the application must not
again reference the objectHandle after this call is made.
If the canceled object is a sender object not completely received by participating
receivers, the receivers will be informed of the object's cancellation via the NORM
protocol NORM_CMD(SQUELCH) message in response to any NACKs requesting
repair or retransmission of the applicable object. In the case of receive objects, the
NORM receiver will not make further requests for repair of the indicated object, but
furthermore, will acknowledge the object as completed with respect to any associated
positive acknowledgement requests (see NormSetWatermark()).

Return Values
This function has no return value.

NormObjectRetain()

Synopsis
#include <normApi.h>

void NormObjectRetain(NormObjectHandle objectHandle);

Description
This function "retains" the objectHandle and any state associated with it for further
use by the application even when the NORM protocol engine may no longer require
access to the associated transport object. Normally, the application is guaranteed that a
given NormObjectHandle is valid only while it is being actively transported by

 67

NORM (i.e., for sender objects, from the time an object is created by the application until
it is canceled by the application or purged (see the NORM_TX_OBJECT_PURGED
notification) by the protocol engine, or, for receiver objects, from the time of the object's
NORM_RX_OBJECT_NEW notification until its reception is canceled by the application
or a NORM_RX_OBJECT_COMPLETED or NORM_RX_OBJECT_ABORTED notification
is posted). Note that an application may refer to a given object after any related
notification until the application makes a subsequent call to NormGetNextEvent().
When the application makes a call to NormObjectRetain() for a given
objectHandle, the application may use that objectHandle value in any NORM
API calls until the application makes a call to NormObjectRelease() for the given
object. Note that the application MUST make a corresponding call to
NormObjectRelease() for each call it has made to NormObjectRetain() in
order to free any system resources (i.e., memory) used by that object. Also note that
retaining a receive object also automatically retains any state associated with the
NormNodeHandle corresponding to the remote sender of that receive object so that
the application may use NORM node API calls for the value returned by
NormObjectGetSender() as needed.

Return Values
This function has no return value.

NormObjectRelease()

Synopsis
#include <normApi.h>

void NormObjectRelease(NormObjectHandle objectHandle);

Description
This function complements the NormObjectRetain() call by immediately freeing
any resources associated with the given objectHandle, assuming the underlying
NORM protocol engine no longer requires access to the corresponding transport object.
Note the NORM protocol engine retains/releases state for associated objects for its own
needs and thus it is very unsafe for an application to call NormObjectRelease() for
an objectHandle for which it has not previously explicitly retained via
NormObjectRetain().

Return Values
This function has no return value.

 68

NormFileGetName()

Synopsis
#include <normApi.h>

bool NormFileGetName(NormObjectHandle fileHandle)
 char* nameBuffer,
 unsigned int bufferLen);

Description
This function copies the name, as a NULL-terminated string, of the file object specified
by the fileHandle parameter into the nameBuffer of length bufferLen bytes
provided by the application. The fileHandle parameter must refer to a valid
NormObjectHandle for an object of type NORM_OBJECT_FILE. If the actual name
is longer than the provided bufferLen, a partial copy will occur. Note that the file
name consists of the entire path name of the specified file object and the application
should give consideration to operating system file path lengths when providing the
nameBuffer.

Return Values
This function returns true upon success and false upon failure. Possible failure conditions
include the fileHandle does not refer to an object of type NORM_OBJECT_FILE.

NormFileRename()

Synopsis
#include <normApi.h>

bool NormFileRename(NormObjectHandle fileHandle)
 const char* fileName);

Description
This function renames the file used to store content for the NORM_OBJECT_FILE
transport object specified by the fileHandle parameter. This allows receiver
applications to rename (or move) received files as needed. NORM uses temporary file
names for received files until the application explicitly renames the file. For example,
sender applications may choose to use the NORM_INFO content associated with a file
object to provide name and/or typing information to receivers. The fileName
parameter must be a NULL-terminated string which should specify the full desired path
name to be used. NORM will attempt to create sub-directories as needed to satisfy the
request. Note that existing files of the same name may be overwritten.

Return Values
This function returns true upon success and false upon failure. Possible failure conditions
include the case where the fileHandle does not refer to an object of type

 69

NORM_OBJECT_FILE and where NORM was unable to successfully create any needed
directories and/or the file itself.

NormDataAccessData()

Synopsis
#include <normApi.h>

const char* NormDataAccessData(NormObjectHandle objectHandle)

Description
This function allows the application to access the data storage area associated with a
transport object of type NORM_OBJECT_DATA. For example, the application may use
this function to copy the received data content for its own use. Alternatively, the
application may establish "ownership" for the allocated memory space using the
NormDataDetachData() function if it is desired to avoid the copy.
If the object specified by the objectHandle parameter has no data content (or is not of
type NORM_OBJECT_DATA), a NULL value may be returned. The application MUST
NOT attempt to modify the memory space used by NORM_OBJECT_DATA objects
during the time an associated objectHandle is valid. The length of data storage area
can be determined with a call to NormObjectGetSize() for the same
objectHandle value.

Return Values
This function returns a pointer to the data storage area for the specified transport object.
A NULL value may be returned if the object has no associated data content or is not of
type NORM_OBJECT_DATA.

NormDataDetachData()

Synopsis
#include <normApi.h>

char* NormDataDetachData(NormObjectHandle objectHandle)

Description
This function allows the application to disassociate data storage allocated by the NORM
protocol engine for a receive object from the NORM_OBJECT_DATA transport object
specified by the objectHandle parameter. It is important that this function is called
after the NORM protocol engine has indicated it is finished with the data object (i.e.,
after a NORM_TX_OBJECT_PURGED, NORM_RX_OBJECT_COMPLETED, or
NORM_RX_OBJECT_ABORTED notification event). But the application must call
NormDataDetachData() before a call is made to NormObjectCancel() or
NormObjectRelease() for the object if it plans to access the data content
afterwards. Otherwise, the NORM protocol engine will free the applicable memory

 70

space when the associated NORM_OBJECT_DATA transport object is deleted and the
application will be unable to access the received data unless it has previously copied the
content.
Once the application has used this call to "detach" the data content, it is the application's
responsibility to subsequently free the data storage space as needed.

Return Values
This function returns a pointer to the data storage area for the specified transport object.
A NULL value may be returned if the object has no associated data content or is not of
type NORM_OBJECT_DATA.

NormObjectGetSender()

Synopsis
#include <normApi.h>

NormNodeHandle NormObjectGetSender(NormObjectHandle objectHandle)

Description
This function retrieves the NormNodeHandle corresponding to the remote sender of
the transport object associated with the given objectHandle parameter. Note that the
returned NormNodeHandle value is only valid for the same period that the
objectHandle is valid. The returned NormNodeHandle may optionally be retained
for further use by the application using the NormNodeRetain() function call. The
returned value can be used in the NORM Node Functions described later in this
document.

Return Values
This function returns the NormNodeHandle corresponding to the remote sender of the
transport object associated with the given objectHandle parameter. A value of
NORM_NODE_INVALID is returned if the specified objectHandle references a
locally originated, sender object.

NORM Node Functions
The functions described in this section may be used for NORM sender or receiver (most
typically receiver) purposes to retrieve additional information about a NormNode, given a
valid NormNodeHandle. Note that, unless specifically retained (see
NormNodeRetain()), a NormNodeHandle provided in a NormEvent notification
should be considered valid only until a subsequent call to NormGetNextEvent() is
made. NormNodeHandles retrieved using NormObjectGetSender() can be
considered valid for the same period of time as the corresponding NormObjectHandle is
valid.

 71

NormNodeGetId()

Synopsis
#include <normApi.h>

NormNodeId NormNodeGetId(NormNodeHandle nodeHandle)

Description
This function retrieves the NormNodeId identifier for the remote participant referenced
by the given nodeHandle value. The NormNodeId is a 32-bit value used within the
NORM protocol to uniquely identify participants within a NORM session. The
participants identifiers are assigned by the application or derived (by the NORM API
code) from the host computers default IP address.

Return Values
This function returns the NormNodeId value associated with the specified
nodeHandle. In the case nodeHandle is equal to NORM_NODE_INVALID, the
return value will be NORM_NODE_NONE.

NormNodeGetAddress()

Synopsis
#include <normApi.h>

bool NormNodeGetAddress(NormNodeHandle nodeHandle,
 char* addrBuffer,
 unsigned int* bufferLen,
 unsigned short* port = (unsigned short*)0);

Description
This function retrieves the current network source address detected for packets received
from remote NORM sender referenced by the nodeHandle parameter. The
addrBuffer must be a pointer to storage of bufferLen bytes in length in which the
referenced sender node's address will be returned. Optionally, the remote sender source
port number (see NormSetTxPort()) is also returned if the optional port pointer to
storage parameter is provided in the call. Note that in the case of Network Address
Translation (NAT) or other firewall activities, the source address detected by the NORM
receiver may not be the original address of the original NORM sender.

Return Values
A value of true is returned upon success and false upon failure. An invalid
nodeHandle parameter value would lead to failure.

 72

NormNodeGetGrtt()

Synopsis
#include <normApi.h>

double NormNodeGetId(NormNodeHandle nodeHandle)

Description
This function retrieves the advertised estimate of group round-trip timing (GRTT) for the
remote sender referenced by the given nodeHandle value. Newly-starting senders that
have been participating as a receiver within a group may wish to use this function to
provide a more accurate startup estimate of GRTT (see NormSetGrttEstimate())
prior to a call to NormStartSender(). Applications may use this information for
other purpose as well. Note that the NORM_GRTT_UPDATED event is posted (see
NormGetNextEvent()) by the NORM protocol engine to indicate when changes in
the local sender or remote senders' GRTT estimate occurs.

Return Values
This function returns the remote sender's advertised GRTT estimate in units of seconds.
A value of -1.0 is returned upon failure. An invalid nodeHandle parameter value
will lead to such failure.

NormNodeRetain()

Synopsis
#include <normApi.h>

void NormNodeRetain(NormNodeHandle nodeHandle)

Description
In the same manner as the NormObjectRetain() function, this function allows the
application to retain state associated with a given nodeHandle value even when the
underlying NORM protocol engine might normally free the associated state and thus
invalidate the NormNodeHandle. If the application uses this function, it must make a
corresponding call to NormNodeRelease() when finished with the node information
to avoid a memory leak condition. NormNodeHandle values (unless retained) are
valid from the time of a NORM_REMOTE_SENDER_NEW notification until a
complimentary NORM_REMOTE_SENDER_PURGED notification. During that interval,
the application will receive NORM_REMOTE_SENDER_ACTIVE and
NORM_REMOTE_SENDER_INACTIVE notifications according to the sender's message
transmission activity within the session.
It is important to note that, if the NORM protocol engine posts a
NORM_REMOTE_SENDER_PURGED notification for a given NormNodeHandle, the
NORM protocol engine could possibly, subsequently establish a new, different
NormNodeHandle value for the same remote sender (i.e., one of equivalent

 73

NormNodeId) if it again becomes active in the session. A new NormNodeHandle
may likely be established even if the application has retained the previous
NormNodeHandle value. Therefore, to the application, it might appear that two
different senders with the same NormNodeId are participating if these notifications are
not carefully monitored. This behavior is contingent upon how the application has
configured the NORM protocol engine to manage resources when there is potential for a
large number of remote senders within a session (related APIs are TBD). For example,
the application may wish to control which specific remote senders for which it keeps state
(or limit the memory resources used for remote sender state, etc) and the NORM API
may be extended in the future to control this behavior.

Return Values
This function has no return value.

NormNodeRelease()

Synopsis
#include <normApi.h>

void NormNodeRelease(NormNodeHandle nodeHandle)

Description
In complement to the NormNodeRetain() function, this API call releases the
specified nodeHandle so that the NORM protocol engine may free associated
resources as needed. Once this call is made, the application should no longer reference
the specified NormNodeHandle, unless it is still valid.

Return Values
This function has no return value.

